Inorg. Chem. 1996, 35, 3073-3076
3073
Evaluation of Triflate Displacement by Water in
CH2Cl2 Solution: Comparison of
trans-[Rh(CO)(PPh3)2(OSO2CF3)] and the
Crystalline Salt trans-[Rh(CO)(PPh3)2(OH2)][OTf]
Anna Svetlanova-Larsen and John L. Hubbard*
Department of Chemistry and Biochemistry,
Utah State University, Logan, Utah 84322-0300
ReceiVed October 5, 1995
Introduction
During the course of our studies of the organometallic
chemistry of the electrophilic [Cp*Ru(NO)]2+ fragment, we have
determined that dissociation of OTf- from Cp*Ru(NO)(OTf)2
to give the corresponding solventocations is somewhat exo-
thermic but entropically costly due to the solvent reorganization
required for the formation of the product ion pairs (Cp* )
η-C5(CH3)5; OTf ) OSO2CF3-).1 Thus, we find that in a
homogeneous H2O-saturated CH2Cl2 solution of Cp*Ru(NO)-
(OTf)2, the major species in solution is the neutral ditriflate
complex with only small amounts of [Cp*Ru(NO)(OTf)(OH2)]+
and [Cp*Ru(NO)(OH2)2]2+ being present. In H2O solution,
OTf- solvolysis is promoted by the considerable Lewis acidity
of the [Cp*Ru(NO)]2+ fragment, leading to H3O+ and dinuclear
µ-hydroxy complexes.1b,2
The nature of weakly coordinating ions is important in the
discussion of coordination unsaturation and catalytic reactivity.3,4
We continue to be interested in the equilibria of OTf-
displacement by coordinating solvents and weak ligands. In
concert with our work on Cp*Ru(NO)(OTf)2, some previous
work has shown OTf- to be a “moderately strong” ligand.5 For
example, a kinetic study of the M(CO)5(OTf) complexes (M )
Mn, Re) showed substitution of OTf- by oxygen donor solvents
in CH2Cl2 to occur for M ) Mn but not for M ) Re.6 If one
considers OTf- to be a fairly good ligand, the report that trans-
[Rh(CO)(PPh3)2(OH2)][OTf] persists in solution with no detect-
able traces of the parent complex trans-[Rh(CO)(PPh3)2(OTf)]
Figure 1. Molecular structure of trans-[Rh(PPh3)2(CO)(OH2)][OTf].
Selected bond distances (Å): Rh-P(1), 2.333(4); Rh-C(1), 1.70(1);
Rh-O(1), 2.00(1); P(1)-C(21), 1.81(2); P(1)-C(31), 1.84(1); P(1)-
C(41), 1.81(2); C(1)-O(1), 1.05(1). Selected bond angles (deg): C(1)-
Rh-P(1), 90(3); O(2)-Rh-P(1), 87.4(7); Rh-C(1)-O(1), 177(3).
would be counterintuitive7 even though the dissociation of OTf-
in the “basic” d8 Rh complexes might be expected to be more
favorable than in electrophilic d6 complexes like Cp*Ru(NO)-
(OTf)2.7,8 Prompted by the rather sketchy analytical details
reported for trans-[Rh(CO)(PPh3)2(OH2)][OTf]‚H2O9 and the
importance of square planar rhodium complexes in catalytic
reactions,10 we embarked on a reinvestigation of this case to
see if H2O actually displaces the OTf- ligand in CH2Cl2. The
results of this study show that OTf- is a better ligand than H2O
in CH2Cl2.
Results
Characterization of trans-[Rh(CO)(PPh3)2(OH2)][OTf].
The combustion analysis for the crystalline material isolated
from the reaction of trans-[Rh(CO)(PPh3)2(Cl)] with AgOTf in
benzene agrees with the formula “[Rh(CO)(PPh3)2(OTf)]‚H2O”.
The use of more than 1 equiv of AgOTf in the reaction leads to
significant contamination of the product with AgOTf.11 The
presence of unreacted AgOTf in the product is easily detected
by a broadening of the 19F NMR signal, the depression of the
melting point from 178 °C, and the reduction of the carbon
content as determined by combustion analysis.
The single-crystal structure determination for crystals of
“[Rh(CO)(PPh3)2(OTf)]‚H2O” shows consistency with the ana-
lytical formulation. The calculated crystal density of 1.57 g/cm3
is the same as the density determined by flotation in CCl4/
hexane. The molecular structure of the complex unambiguously
shows a trans-arrangement of the PPh3 ligands (Figure 1).
(1) (a) Burns, R. M.; Hubbard, J. L. J. Am. Chem. Soc. 1994, 116, 9514.
(b) Svetlanova-Larsen, A.; Zoch, C. R.; Hubbard, J. L. Organome-
tallics, in press.
(2) Lewis acidic metal ions like Al3+ are noted for their reactivity in water
to give acidic solutions containing polynuclear µ-OH complexes;
see: Burgess, J. Metal Ions in Solution; John Wiley & Sons: New
York, 1978.
(3) (a) Lawrance, G. A. Chem. ReV. 1986, 86, 17 and references therein.
(b) Beck, W.; Su¨nkel, K.; Chem. ReV. 1988, 88, 1405 and references
therein. (c) Blosser, P. W.; Gallucci, J. C.; Wojcicki, A. Inorg. Chem.
1992, 31, 2376.
(4) Humphrey, R. B.; Lamanna, W. M.; Brookhart, M.; Husk, G. R. Inorg.
Chem. 1983, 22, 3355.
(5) (a) Hollis, T. K.; Robinson, N. P.; Bosnich, B. Organometallics 1992,
11, 2645. (b) Hollis, T. K.; Robinson, N. P.; Bosnich, B. J. Am. Chem.
Soc. 1992, 114, 5464. (c) Bonnesen, P. V.; Puckett, C. L.; Honeychuck,
R. V.; Hersh, W. H. J. Am. Chem. Soc. 1989, 111, 6070. (d)
Honeychuck, R. V.; Bonnesen, P. V.; Farahi, J.; Hersh, W. H. J. Org.
Chem. 1987, 52, 5293. (e) Odenkirk, W.; Rheingold, A. L.; Bosnich,
B. J. Am. Chem. Soc. 1992, 114, 6392. (f) Haggin, J. Aqueous Media
Offer Promises And Problems In Organometallic Catalysis. Chem. Eng.
News Oct. 10, 28-33. (g) Wang, L.; Flood, T. C. J. Am. Chem. Soc.
1992, 114, 3169; (h) Wang, C.; Ziller, J. W.; Flood, T. C. J. Am.
Chem. Soc. 1995, 117, 1647. (i) Wang, L.; Lu, R. S.; Bau, R.; Flood,
T. C. J. Am. Chem. Soc. 1993, 115, 6999. (j) Darensbourg, D. J.;
Stafford, N. W.; Joo, F.; Reibenspies, J. H. J. Organomet. Chem. 1995,
488, 99. (k) McGrath, D. V.; Grubbs, R. H. Organometallics 1994,
13, 224.
(7) Branan, N. M.; Hoffman, N. W.; McElroy, E. A.; Prokopuk, N.;
Salazar, A. B.; Robbins, M. J.; Hill, W. E.; Webb, T. R. Inorg. Chem.
1991, 30, 1200.
(8) (a) Werner, H. Pure Appl. Chem. 1982, 54, 177. (b) Werner, H. Angew.
Chem., Int. Ed. Engl. 1983, 22, 927.
(9) Neither the work in ref 3 nor that in references therein reported the
combustion analysis, mp, and solid-state IR νCO data for the Rh-OTf
complex: Branan, D. M.; Hoffman, N. W.; McElroy, E. A.; Ramage,
D. L.; Robbins, M. J; Eyler, J. R.; Watson, C. H.; deFur, P.; Leary, J.
A. Inorg. Chem. 1990, 29, 1915.
(10) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principals
of Organotransition Metal Chemistry; University Science Books: Mill
Valley, CA, 1987; chapters 10-12 and references therein.
(11) This reaction can be successfully performed in fluorobenzene with 1
equiv of AgOTf according to the published procedure for the synthesis
of (PPh3)2Ir(CO)(OTf): Liston, D. J.; Lee, Y. J.; Scheidt, W. R.; Reed,
C. A. J. Am. Chem. Soc. 1989, 111, 6643.
(6) (a) Nitschke, J.; Schmidt, S. P.; Trogler, W. C. Inorg. Chem. 1985,
24, 1972. (b) Trogler, W. C. J. Am. Chem. Soc. 1979, 101, 6459.
S0020-1669(95)01287-0 CCC: $12.00 © 1996 American Chemical Society