Table 1 Oxidation of alkanes catalyzed by complex 2 with TBHP–decanea
Substrate
Product
TONb
Conv. oxidant
42% (5%)
Remarks
Cyclohexanec,d
Adamantanec
Cyclohexanol
Cyclohexanone
Adamant-1-ol
1.6 (0.5)
2.6 (n.o.)
6.9 (0.6)
1.1 (n.o.)
0.5 (n.o.)
1.2
0.5
4
5.4
A/K = 0.6 (0.5)
3◦/2◦ = 12.6 (1.8)
85% (6%)
Adamant-2-ol
Adamant-2-one
(R,R & S,S)-1,2-ol
(R,S & S,R)-1,2-ol
1-Phenyl ethanol
Acetophenone
cis-1,2-Dimethylcyclohexane
17%
94%
RCe = 41%
Ethylbenzene
ee% = 6.5
A/K = 0.74
a Reaction conditions: 0.5 mL of 70 mM tBuOOH (5–6 M decane solution) solution in MeCN was added slowly over 30 min to a stirred solution of
2.8 mL MeCN containing 2 (3.5 lmol) and substrate (1.75 mmol) at ambient temperature, stirring was continued for another 30 min; ratio of cat :
oxidant : substrate = 1 : 10 : 500. The reported values are the average of two independent runs. b Moles of product/moles of catalyst. c The values in
parentheses were obtained under Ar, n.o. = not observed. d Cyclohexyl tert-butylperoxide was only observed in GC-MS when 150 eq of oxidant were
used (results not shown). e Retention of configuration (RC) of 3◦-ol = 100 × [(RR + SS) − (RS + SR)]/(3◦-ol).
while no cyclohexylchloride or cyclohexyl tert-butylperoxide was
observed under similar conditions in the oxidation of cyclohexane.
The low A/K ratios, observed for cyclohexane and ethylbenzene
indicate that O-centered alkylperoxy radicals,7c,7d,16 which can dis-
proportionate into products via Haber–Weiss reactions17a and Rus-
sell termination steps,17b most likely participate in the oxidation
process. The formation of the 1,2-ol product with the loss of the
stereochemistry in the oxidation of cis-1,2-dimethylcyclohexane
can be explained by the formation of substrate alkyl radicals with
a lifetime sufficiently long to allow epimerization at the radical
site. These observations together with the significant decrease of
the oxidation products in the presence of radical traps imply that
alkyl radicals are to a certain extent involved in the oxidation of
the alkanes with 2 and TBHP.16 On the other hand, the normalized
3◦/2◦ ratio (12.3) for adamantane oxidation is significantly larger
than that found for Gif-type oxidations (2.7) or oxidations
attributed to HO• (2) or tBuOO• (6-10) radicals,7c,18 and is in the
range of oxidations with PhIO catalyzed by P450 mimics19 and
close to the values obtained with [FeII(TPA)(MeCN)2]/H2O2.20
The high 3◦/2◦ ratio indicates that an oxidant more selective than
HO• or tBuO• is involved.
In conclusion, we have demonstrated by several spectroscopic
techniques the formation of a diastereopure, mononuclear, high-
spin iron(III) alkylperoxo complex with seven-coordinate geometry
which is unique for Fe(III) alkylperoxo complexes.7,8 Complex 2
shows catalytic activity in the oxidation of non-activated alkanes
with high TON’s and the possibility that a metal-based oxidant
is involved in the oxidation cannot be excluded in view of the
high 3◦/2◦ ratio for the oxidation of adamantane, even though
O-radicals and C-radicals are apparently generated during these
reactions.
2 (a) For a-keto acid dependent enzymes see: J. C. Price, E. W. Barr,
T. E. Glass, C. Krebs and J. M. Bolinger, Jr., J. Am. Chem. Soc., 2003,
125, 13008; (b) D. A. Proshlyakov, T. F. Henshaw, G. R. Monterosso,
M. J. Ryle and R. P. Hausinger, J. Am. Chem. Soc., 2004, 126,
1022.
3 (a) For superoxide reductases see: J. P. Emerson, E. D. Coulter, D. E.
Cabelli, R. S. Phillips and D. M. Kurtz, Jr., Biochemistry, 2002,
41, 4348; (b) C. Mathe´, T. A. Mattioli, O. Horner, M. Lombard,
J.-M. Latour, M. Fontecave and V. Nivie`re, J. Am. Chem. Soc., 2002,
124, 4966; (c) V. Nivie`re, M. Asso, C. O. Weil, M. Lombard, B.
Guigliarelli, V. Favaudon and C. Houe´e-Levin, Biochemistry, 2004, 43,
808.
4 R. M. Burger, Chem. Rev., 1998, 98, 1153.
5 (a) M. Costas, K. Chen and L. Que, Jr., Coord. Chem. Rev., 2000,
200-202, 517; (b) M. Costas, M. P. Mehn, M. P. Jensen and L. Que,
Jr., Chem. Rev., 2004, 104, 939; (c) X. Shan and L. Que, Jr., J. Inorg.
Biochem., 2006, 100, 421.
6 (a) J.-J. Girerd, F. Banse and A. J. Simaan, J. Struct. Bonding, 2000, 97,
146 references cited therein; (b) M. S. Seo, T. Kamachi, T. Kouno, K.
Murata, M. J. Park, K. Yoshizawa and W. Nam, Angew. Chem., 2007,
119, 2341.
7 (a) S. Me´nage, E. C. Wilkinson, L. Que, Jr. and M. Fontecave, Angew.
Chem., Int. Ed. Engl., 1995, 34, 203; (b) J. Kim, E. Larka, E. C.
Wilkinson and L. Que, Jr., Angew. Chem., Int. Ed. Engl., 1995, 34,
2048; (c) C. Nguyen, R. J. Guajardo and P. Mascharak, Inorg. Chem.,
1996, 35, 6373; (d) J. M. Rowland, M. Olmstead and P. K. Mascharak,
Inorg. Chem., 2001, 40, 2810; (e) J.-U. Rohde, S. Torelli, X. Shan, M. H.
Lim, E. J. Klinker, J. Kaizer, K. Chen, W. Nam and L. Que, Jr., J. Am.
Chem. Soc., 2004, 126, 16750; (f) M. Bukowski, P. Comba, A. Lienke,
C. Limberg, C. Lopez de Laorden, R. Mas-Balleste´, M. Merz and L.
Que, Jr., Angew. Chem., Int. Ed., 2006, 45, 3446.
8 (a) Y. Zhang, T. E. Elgren, Y. Dong and L. Que, Jr., J. Am. Chem. Soc.,
1993, 115, 811; (b) Y. Zhang, J. Kim, Y. Dong, E. C. Wilkinson, E. H.
Appelman and L. Que, Jr., J. Am. Chem. Soc., 1997, 119, 4197; (c) A.
Wada, S. Ogo, Y. Watanabe, M. Mukai, T. Kitagawa, K. Jitsukawa, H.
Masuda and H. Einaga, Inorg. Chem., 1999, 38, 3592; (d) M. P. Jensen,
S. J. Lange, M. P. Mehn, E. L. Que and L. Que, Jr., J. Am. Chem. Soc.,
2003, 125, 2113; (e) M. P. Jensen, M. Costas, R. Y. N. Ho, J. Kaizer, A.
Mairata y Payeras, E. Mu¨nck, L. Que, Jr., J.-U. Rohde and A. Stubna,
J. Am. Chem. Soc., 2005, 127, 10512.
9 (a) N. Lehnert, R. Y. N. Ho, L. Que, Jr. and E. I. Solomon, J. Am.
Chem. Soc., 2001, 121, 8271; (b) N. Lehnert, R. Y. N. Ho, L. Que, Jr.
and E. I. Solomon, J. Am. Chem. Soc., 2001, 121, 12802.
10 J. Kim, Y. Zang, M. Costas, R. G. Harrison, E. C. Wilkinson and L.
Que, Jr., J. Biol. Inorg. Chem., 2001, 6, 275.
11 S. Gosiewska, J. L. M. Cornelissen, M. Lutz, A. L. Spek, G. van Koten
and R. J. M. Klein Gebbink, Inorg. Chem., 2006, 45, 4214.
12 Complex 4 is also formed when an aqueous solution of TBHP (70%)
is added to an acetonitrile solution of 2 with kmax = 568 nm (e =
1046 M−1 cm−1, Fig. S1†) showing essentially identical ESI-MS spectra.
13 For detailed analysis of the IR vibrations of coordinated and uncoor-
dinated triflate anions to the iron, see ref. 11.
The authors thank Dr Gerard Roelfes (Stratingh Institute,
University of Groningen), Dr Ernst E. van Faassen (Department
of Surfaces, Interfaces and Devices, Utrecht University), Dr
Eli Stavitski and Dr Kaisa Kervinen (Inorganic Chemistry and
Catalysis, Utrecht University). This work was supported by the
National Research School Combination-Catalysis (NRSC-C).
Notes and references
1 For lipoxygenases see: E. Skrzypczak-Jankun, R. A. Bross, R. D. Caroll,
W. R. Dunham and M. O. Funk, Jr., J. Am. Chem. Soc., 2001, 123,
10814.
14 The synthesis and X-ray structural determination of [Fe(1)(OH2)2]-
(OTf)2 was reported earlier by us, see ref. 11.
This journal is
The Royal Society of Chemistry 2007
Dalton Trans., 2007, 3365–3368 | 3367
©