Inorganic Chemistry
Article
Relationship between ω-Hydroxylation and Terminal Desaturation of
Valproic Acid. Biochemistry 1995, 34, 7889−7895.
(15) Rettie, A. E.; Boberg, M.; Rettenmeier, A. W.; Baillie, T. A.
Cytochrome P-450-catalyzed desaturation of valproic acid in vitro.
Species differences, induction effects, and mechanistic studies. J. Biol.
Chem. 1988, 263, 13733−13738.
(16) Rettie, A. E.; Rettenmeier, A. W.; Howald, W. N.; Baillie, T. A.
Cytochrome P-450-catalyzed formation of Δ4-VPA, a toxic metabolite
of valproic acid. Science 1987, 235, 890−893.
(17) Guengerich, F. P.; Kim, D. H. Enzymic oxidation of ethyl
carbamate to vinyl carbamate and its role as an intermediate in the
formation of 1,N6-ethenoadenosine. Chem. Res. Toxicol. 1991, 4, 413−
421.
(18) Nagata, K.; Liberato, D. J.; Gillette, J. R.; Sasame, H. A. An
unusual metabolite of testosterone. 17 β-Hydroxy-4,6-androstadiene-
3-one. Drug Metab. Dispos. 1986, 14, 559−565.
(19) Guan, X.; Fisher, M. B.; Lang, D. H.; Zheng, Y.-M.; Koop, D.
R.; Rettie, A. E. Cytochrome P450-dependent desaturation of lauric
acid: isoform selectivity and mechanism of formation of 11-
dodecenoic acid. Chem. Biol. Interact. 1998, 110, 103−121.
(20) Rude, M. A.; Baron, T. S.; Brubaker, S.; Alibhai, M.; Del
Cardayre, S. B.; Schirmer, A. Terminal Olefin (1-Alkene) Biosynthesis
by a Novel P450 Fatty Acid Decarboxylase from Jeotgalicoccus Species.
Appl. Environ. Microbiol. 2011, 77, 1718−1727.
(21) Liu, Y.; Wang, C.; Yan, J.; Zhang, W.; Guan, W.; Lu, X.; Li, S.
Hydrogen peroxide-independent production of α-alkenes by OleTJE
P450 fatty acid decarboxylase. Biotechnol. Biofuels 2014, 7, 28−39.
(22) Faponle, A. S.; Quesne, M. G.; de Visser, S. P. Origin of the
Regioselective Fatty-Acid Hydroxylation versus Decarboxylation by a
Cytochrome P450 Peroxygenase: What Drives the Reaction to Biofuel
Production? Chem. - Eur. J. 2016, 22, 5478−5483.
(32) Weitz, A. C.; Mills, M. R.; Ryabov, A. D.; Collins, T. J.; Guo, Y.;
Bominaar, E. L.; Hendrich, M. P. A Synthetically Generated
LFeIVOHn Complex. Inorg. Chem. 2019, 58, 2099−2108.
(33) Drummond, M. J.; Ford, C. L.; Gray, D. L.; Popescu, C. V.;
Fout, A. R. Radical Rebound Hydroxylation Versus H-Atom Transfer
in Non-Heme Iron(III)-Hydroxo Complexes: Reactivity and Struc-
tural Differentiation. J. Am. Chem. Soc. 2019, 141, 6639−6650.
(34) Xu, N.; Powell, D. R.; Richter-Addo, G. B. Nitrosylation in a
Crystal: Remarkable Movements of Iron Porphyrins Upon Binding of
Nitric Oxide. Angew. Chem., Int. Ed. 2011, 50, 9694−9696.
(35) Cheng, B.; Safo, M. K.; Orosz, R. D.; Reed, C. A.; Debrunner,
P. G.; Scheidt, W. R. Synthesis, Structure, and Characterization of
Five-Coordinate Aquo(octaethylporphinato)iron(III) Perchlorate.
Inorg. Chem. 1994, 33, 1319−1324.
(36) Ohgo, Y.; Chiba, Y.; Hashizume, D.; Uekusa, H.; Ozeki, T.;
Nakamura, M. Novel spin transition between S = 5/2 and S = 3/2 in
highly saddled iron(III) porphyrin complexes at extremely low
temperatures. Chem. Commun. 2006, 1935−1937.
(37) Ellis, W. C.; Tran, C. T.; Roy, R.; Rusten, M.; Fischer, A.;
Ryabov, A. D.; Blumberg, B.; Collins, T. J. Designing Green Oxidation
Catalysts for Purifying Environmental Waters. J. Am. Chem. Soc. 2010,
132, 9774−9781.
(38) Ghosh, A.; Ryabov, A. D.; Mayer, S. M.; Horner, D. C.;
Prasuhn, D. E.; Sen Gupta, S.; Vuocolo, L.; Culver, C.; Hendrich, M.
P.; Rickard, C. E. F.; Norman, R. E.; Horwitz, C. P.; Collins, T. J.
Understanding the Mechanism of H+-Induced Demetalation as a
Design Strategy for Robust Iron(III) Peroxide-Activating Catalysts. J.
Am. Chem. Soc. 2003, 125, 12378−12379.
(39) Simkhovich, L.; Goldberg, I.; Gross, Z. Iron(III) and Iron(IV)
Corroles: Synthesis, Spectroscopy, Structures, and No Indications for
Corrole Radicals. Inorg. Chem. 2002, 41, 5433−5439.
(23) Belcher, J.; McLean, K. J.; Matthews, S.; Woodward, L. S.;
Fisher, K.; Rigby, S. E. J.; Nelson, D. R.; Potts, D.; Baynham, M. T.;
Parker, D. A.; Leys, D.; Munro, A. W. Structure and Biochemical
Properties of the Alkene Producing Cytochrome P450 OleTJE
(CYP152L1) from the Jeotgalicoccus sp. 8456 Bacterium. J. Biol. Chem.
2014, 289, 6535−6550.
(40) Simkhovich, L.; Mahammed, A.; Goldberg, I.; Gross, Z.
Synthesis and Characterization of Germanium, Tin, Phosphorus, Iron,
and Rhodium Complexes of Tris(pentafluorophenyl)corrole, and the
Utilization of the Iron and Rhodium Corroles as Cyclopropanation
Catalysts. Chem. - Eur. J. 2001, 7, 1041−1055.
(41) Zaragoza, J. P. T.; Siegler, M. A.; Goldberg, D. P. A Reactive
Manganese(IV)−Hydroxide Complex: A Missing Intermediate in
Hydrogen Atom Transfer by High-Valent Metal-Oxo Porphyrinoid
Compounds. J. Am. Chem. Soc. 2018, 140, 4380−4390.
(24) Grant, J. L.; Mitchell, M. E.; Makris, T. M. Catalytic strategy for
carbon−carbon bond scission by the cytochrome P450 OleT. Proc.
Natl. Acad. Sci. U. S. A. 2016, 113, 10049−10054.
(25) Hsieh, C. H.; Huang, X.; Amaya, J. A.; Rutland, C. D.; Keys, C.
L.; Groves, J. T.; Austin, R. N.; Makris, T. M. The Enigmatic P450
Decarboxylase OleT Is Capable of, but Evolved To Frustrate, Oxygen
Rebound Chemistry. Biochemistry 2017, 56, 3347−3357.
(42) Blomberg, M. R. A.; Siegbahn, P. E. M. A comparative study of
high-spin manganese and iron complexes. Theor. Chem. Acc. 1997, 97,
72−80.
(43) Stein, S. E.; Brown, R. L. Prediction of carbon-hydrogen bond
dissociation energies for polycyclic aromatic hydrocarbons of arbitrary
size. J. Am. Chem. Soc. 1991, 113, 787−793.
́
(26) Pickl, M.; Kurakin, S.; Cantu Reinhard, F. G.; Schmid, P.;
̈
Pocheim, A.; Winkler, C. K.; Kroutil, W.; de Visser, S. P.; Faber, K.
Mechanistic Studies of Fatty Acid Activation by CYP152
Peroxygenases Reveal Unexpected Desaturase Activity. ACS Catal.
2019, 9, 565−577.
(44) Hansch, C.; Leo, A.; Taft, R. W. A survey of Hammett
substituent constants and resonance and field parameters. Chem. Rev.
1991, 91, 165−195.
(27) Mittra, K.; Green, M. T. Reduction Potentials of P450
Compounds I and II: Insight into the Thermodynamics of C−H
Bond Activation. J. Am. Chem. Soc. 2019, 141, 5504−5510.
(28) Hayashi, Y.; Yamazaki, I. The oxidation-reduction potentials of
compound I/compound II and compound II/ferric couples of
horseradish peroxidases A2 and C. J. Biol. Chem. 1979, 254, 9101−
9106.
(45) Lee, J. Y.; Peterson, R. L.; Ohkubo, K.; Garcia-Bosch, I.; Himes,
R. A.; Woertink, J.; Moore, C. D.; Solomon, E. I.; Fukuzumi, S.;
Karlin, K. D. Mechanistic Insights into the Oxidation of Substituted
Phenols via Hydrogen Atom Abstraction by a Cupric−Superoxo
Complex. J. Am. Chem. Soc. 2014, 136, 9925−9937.
(46) Lucarini, M.; Pedrielli, P.; Pedulli, G. F.; Cabiddu, S.; Fattuoni,
C. Bond Dissociation Energies of O−H Bonds in Substituted Phenols
from Equilibration Studies. J. Org. Chem. 1996, 61, 9259−9263.
(47) Marcus, R. A.; Sutin, N. Electron transfers in chemistry and
biology. Biochim. Biophys. Acta, Rev. Bioenerg. 1985, 811, 265−322.
(48) Wijeratne, G. B.; Corzine, B.; Day, V. W.; Jackson, T. A.
Saturation Kinetics in Phenolic O−H Bond Oxidation by a
Mononuclear Mn(III)−OH Complex Derived from Dioxygen.
Inorg. Chem. 2014, 53, 7622−7634.
(49) Rice, D. B.; Wijeratne, G. B.; Burr, A. D.; Parham, J. D.; Day, V.
W.; Jackson, T. A. Steric and Electronic Influence on Proton-Coupled
Electron-Transfer Reactivity of a Mononuclear Mn(III)-Hydroxo
Complex. Inorg. Chem. 2016, 55, 8110−8120.
(50) Sastri, C. V.; Lee, J.; Oh, K.; Lee, Y. J.; Lee, J.; Jackson, T. A.;
Ray, K.; Hirao, H.; Shin, W.; Halfen, J. A.; Kim, J.; Que, L., Jr.; Shaik,
̈
(29) Zaragoza, J. P. T.; Yosca, T. H.; Siegler, M. A.; Moenne-Loccoz,
P.; Green, M. T.; Goldberg, D. P. Direct Observation of Oxygen
Rebound with an Iron-Hydroxide Complex. J. Am. Chem. Soc. 2017,
139, 13640−13643.
(30) Ganguly, S.; Giles, L. J.; Thomas, K. E.; Sarangi, R.; Ghosh, A.
Ligand Noninnocence in Iron Corroles: Insights from Optical and X-
ray Absorption Spectroscopies and Electrochemical Redox Potentials.
Chem. - Eur. J. 2017, 23, 15098−15106.
(31) Ganguly, S.; McCormick, L. J.; Conradie, J.; Gagnon, K. J.;
Sarangi, R.; Ghosh, A. Electronic Structure of Manganese Corroles
Revisited: X-ray Structures, Optical and X-ray Absorption Spectros-
copies, and Electrochemistry as Probes of Ligand Noninnocence.
Inorg. Chem. 2018, 57, 9656−9669.
I
Inorg. Chem. XXXX, XXX, XXX−XXX