Organic Process Research & Development
Page 16 of 17
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
2
1.
Stanley, J. N. G.; Selva, M.; Masters, A. F.; Maschmeyer, T.; Perosa, A., Reactions of p-
coumaryl alcohol model compounds with dimethyl carbonate. Towards the upgrading of lignin
building blocks. Green Chem. 2013, 15 (11), 3195-3204.
2
Cavani, F., Process systems for the carbonate interchange reactions of DMC and alcohols:
efficient synthesis of catechol carbonate. Catal. Sci. Technol. 2018, 8 (7), 1971-1980.
2.
Tabanelli, T.; Cailotto, S.; Strachan, J.; Masters, A. F.; Maschmeyer, T.; Perosa, A.;
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
2
3.
heterogeneous basic catalysts. Chem. Soc. Rev. 2015, 44 (15), 5092-5147.
4. Gruselle, M., Apatites: A new family of catalysts in organic synthesis. J. Organomet.
Chem. 2015, 793, 93-101.
5. Nishimura, S.; Takagaki, A.; Ebitani, K., Characterization, synthesis and catalysis of
hydrotalcite-related materials for highly efficient materials transformations. Green Chem. 2013,
Sun, L.-B.; Liu, X.-Q.; Zhou, H.-C., Design and fabrication of mesoporous
2
2
1
2
5 (8), 2026-2042.
6. Debecker, D. P.; Gaigneaux, E. M.; Busca, G., Exploring, Tuning, and Exploiting the
Basicity of Hydrotalcites for Applications in Heterogeneous Catalysis. Chem. Eur. J. 2009, 15
16), 3920-3935.
7. Keller, T. C.; Desai, K.; Mitchell, S.; Pérez-Ramírez, J., Design of Base Zeolite Catalysts
by Alkali-Metal Grafting in Alcoholic Media. ACS Catal. 2015, 5 (9), 5388-5396.
28. Zhu, L.; Liu, X.-Q.; Jiang, H.-L.; Sun, L.-B., Metal–Organic Frameworks for
Heterogeneous Basic Catalysis. Chem. Rev. 2017, 117 (12), 8129-8176.
9. Chen, L.; Zhao, J.; Yin, S.-F.; Au, C.-T., A mini-review on solid superbase catalysts
developed in the past two decades. RSC Adv. 2013, 3 (12), 3799-3814.
0. Rayzman, V.; Filipovich, I.; Nisse, L.; Vlasenko, Y., Sodium aluminate from alumina-
bearing intermediates and wastes. JOM 1998, 50 (11), 32-37.
31. Despax, S.; Estrine, B.; Hoffmann, N.; Le Bras, J.; Marinkovic, S.; Muzart, J.,
(
2
2
3
Isomerization of d-glucose into d-fructose with a heterogeneous catalyst in organic solvents.
Catal. Commun. 2013, 39 (Supplement C), 35-38.
3
production from efficient isomerization of lactose catalyzed by recyclable sodium aluminate.
Food Chem. 2017, 233 (Supplement C), 151-158.
2.
Wang, M.; Gasmalla, M. A. A.; Admassu Tessema, H.; Hua, X.; Yang, R., Lactulose
3
3.
Heterogeneous Base Catalyst for Biodiesel Production from Soybean Oil. Energy Fuels 2009, 23
2), 1089-1092.
4. Mutreja, V.; Singh, S.; Ali, A., Sodium Aluminate as Catalyst for Transesterification of
Waste Mutton Fat. J. Oleo Sci. 2012, 61 (11), 665-669.
5. Bai, R.; Liu, P.; Yang, J.; Liu, C.; Gu, Y., Facile Synthesis of 2-Aminothiophenes Using
Wan, T.; Yu, P.; Wang, S.; Luo, Y., Application of Sodium Aluminate As a
(
3
3
NaAlO2 as an Eco-Effective and Recyclable Catalyst. ACS Sus. Chem. Eng. 2015, 3 (7), 1292-
1297.
36.
catalyzed by spray dried sodium aluminate microspheres. Catal. Commun. 2017, 97 (Supplement
C), 102-105.
3
Ramesh, S.; Debecker, D. P., Room temperature synthesis of glycerol carbonate
7.
Ramesh, S.; Devred, F.; Biggelaar, L. v. d.; Debecker, D. P., Hydrotalcites Promoted by
NaAlO2 as Strongly Basic Catalysts with Record Activity in Glycerol Carbonate Synthesis.
ChemCatChem 2018, 10 (6), 1398-1405.
ACS Paragon Plus Environment
1
6