Ph
C6H4X
2+
1
2
M. A. Pen
44, 7–57.
R. M. Navarro, M. A. Pen
07, 3952–3991.
V. Artero and M. Fontecave, Coord. Chem. Rev., 2005, 249, 1518–1535.
K. A. Vincent, A. Parkin and F. A. Armstrong, Chem. Rev., 2007,
˜
a, P. P. Gomez and J. L. G. Fierro, Appl. Catal., A, 1996,
10 (a) [Ni(P
2
N
2
)
2
]
Complexes as Electrocatalysts for H
2
1
Production: U. J. Kilgore, J. A. S. Roberts, D. H. Pool,
A. M. Appel, M. P. Stewart, M. Rakowski-DuBois, W. G.
Dougherty, W. G. Kassel, R. M. Bullock and D. L. DuBois,
J. Am. Chem. Soc., 2011, 133, 5861–5872(b) Similar complexes
have also been shown to perform CO
as H production: M. Rakowski-DuBois and D. L. DuBois,
Acc. Chem. Res., 2009, 42, 1974–1982(c) M. L. Helm, M. P.
Stewart, R. M. Bullock, M. Rakowski DuBois and D. L.
DuBois, Science, 2011, 333, 863–866.
˜
a and J. L. G. Fierro, Chem. Rev., 2007,
1
3
4
2
electroreduction as well
1
07, 4366–4413.
(a) J. O’M. Bockris and B. E. Conway, Trans. Faraday Soc., 1949,
5, 989–999; (b) H. Ezaki, M. Morinaga and S. Watanabe,
2
5
6
4
Electrochim. Acta, 1993, 38, 557–564.
(a) U. Koelle and S. Ohst, Inorg. Chem., 1986, 25, 2689;
11 Ni and Co cobaloximes: P.-A. Jacques, V. Artero, J. Pecaut and
M. Fontecave, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 20627–20632.
12 B. D. Stubbert, J. C. Peters and H. B. Gray, J. Am. Chem. Soc.,
2011, 133(45), 18070–18073.
13 David Morales-Morales and Craig Jensen, The Chemistry of Pincer
Compounds, Elsevier, 2007.
(b) P. Connolly and J. H. Espenson, Inorg. Chem., 1986, 25,
2684–2688; (c) T.-H. Chao and J. H. Espenson, J. Am. Chem.
Soc., 1978, 100, 129–133; (d) R. M. Kellett and T. G. Spiro, Inorg.
Chem., 1985, 24, 2373–2377; (e) X. Hu, B. S. Brunschwig and
J. C. Peters, J. Am. Chem. Soc., 2007, 129, 8988–8998; (f) N. K.
Szymczak, L. A. Berben and J. C. Peters, Chem. Commun., 2009,
14 T. D. Manuel and J.-U. Rohde, J. Am. Chem. Soc., 2009, 131,
15582–15583.
6
2
729–6731; (g) L. A. Berben and J. C. Peters, Chem. Commun.,
010, 46, 398–400; (h) C. Baffert, V. Artero and M. Fontecave,
15 (a) D. H. Pool and D. L. DuBois, J. Organomet. Chem., 2009, 694,
2858–2865; (b) A. D. Wilson, R. H. Newell, M. J. McNevin,
J. T. Muckerman, M. Rakowski DuBois and D. L. DuBois,
J. Am. Chem. Soc., 2006, 128, 358–366. The original report for
the method: (c) R. S. Nicholson and I. Shain, Anal. Chem., 1964,
36(4), 706–723.
Inorg. Chem., 2007, 46, 1817–1824; (i) P. V. Bernhardt and
L. A. Jones, Inorg. Chem., 1999, 38, 5086–5090; (j) O. Pantani,
S. Naskar, R. Guillot, P. Millet, E. Anxolabe
A. Aukauloo, Angew. Chem., Int. Ed., 2008, 47, 9948–9950;
k) M. Razavet, V. Artero and M. Fontecave, Inorg. Chem., 2005,
4, 4786–4795; (l) A. Fihri, V. Artero, M. Razavet, C. Baffert,
W. Leibl and M. Fontecave, Angew. Chem., Int. Ed., 2008, 47,
64–567; (m) J. L. Dempsey, B. S. Brunschwig, J. R. Winkler and
here-Mallart and
´ `
(
4
16 Since not all precatalyst molecules are simultaneously in contact
with the electrode throughout the CV experiment, the voltammetric
5
2
rate of H formation is higher than the observed gas evolution
H. B. Gray, Acc. Chem. Res., 2009, 42, 1995–2004; (n) J. L. Dempsey,
J. R. Winkler and H. B. Gray, J. Am. Chem. Soc., 2010, 132,
observed in a headspace analysis.
17 O. R. Luca, T. Wang, S. J. Konezny, V. S. Batista and
R. H. Crabtree, New J. Chem., 2011, 35, 998–999.
16774–16776; (o) J. L. Dempsey, J. R. Winkler and H. B. Gray,
J. Am. Chem. Soc., 2010, 132, 1060–1065; (p) P. Du, J. Schneider,
G. Luo, W. W. Brennessel and R. Eisenberg, Inorg. Chem., 2009, 48,
18 (a) T. Wang, G. Brudvig and V. S. Batista, J. Chem. Theory Comput.,
2010, 6, 755–760; (b) T. Wang, G. W. Brudvig and V. S. Batista,
J. Chem. Theory Comput., 2010, 6, 2395–2401.
4952–4962; (q) P. Du, K. Knowles and R. Eisenberg, J. Am. Chem.
Soc., 2008, 130, 12576–12577; (r) A. Fihri, V. Artero, A. Pereira and
M. Fontecave, Dalton Trans., 2008, 5567–5569; (s) B. Probst,
C. Kolano, P. Hamm and R. Alberto, Inorg. Chem., 2009, 48,
19 M. J. Frisch, et al., Gaussian 09, Revision A.1, Gaussian, Inc.,
Wallingford CT, 2009. See the ESI for the complete reference.
20 (a) P. J. Chirik and K. Wieghardt, Science, 2010, 327, 794–795;
(b) M. W. Bouwkamp, A. C. Bowman, E. Lobkovsky and P. J.
Chirik, J. Am. Chem. Soc., 2006, 128, 13340–13341; (c) P. H. M.
Budzelaar, B. de Bruin and A. W. Gal, Inorg. Chem., 2001, 40,
4649–4655; (d) G. T. Sazama and T. A. Betley, Inorg. Chem., 2010,
49, 2512–2524; (e) A case of a redox active ligand participation in olefin
binding was highlighted: R. H. Crabtree, Science, 2001, 291, 56–57;
(f) K. Wang and E. I. Stiefel, Science, 2001, 291, 106–109. The data
analysis in this paper was revised by ; (g) W. E. Geiger, Inorg. Chem.,
2002, 41, 136–139.
1
836–1843; (t) F. Lakadamyali and R. Erwin, Chem. Commun., 2011,
7, 1695–1697; (u) E. Szajna-Fuller and A. Bakac, Eur. J. Inorg. Chem.,
010, 2488–2494; (v) O. Pantani, E. Anxolabehere-Mallart, A. Aukauloo
and P. Millet, Electrochem. Commun., 2007, 9, 54–58.
(CpMom-S) CH as electrocatalyst for production:
4
2
´
`
7
2
S
2
2
H
2
A. M. Appel, D. L. DuBois and M. Rakowski-DuBois, J. Am.
Chem. Soc., 2005, 127, 12717–12726.
[(Py Me )Mo(CF SO )] is a precatalyst for H electroreduction: H. I.
5 2 3 3
+
+
8
9
Karunadasa, C. J. Chang and J. R. Long, Nature, 2010, 464, 1329–1333.
(a) L. L. Efros, H. H. Thorp, G. W. Brudvig and R. H. Crabtree, Inorg.
Chem., 1992, 31, 1722–1724; (b) P. V. Bernhardt, G. A. Lawrence and
D. F. Sangster, Inorg. Chem., 1988, 27, 4055–4059.
21 (a) M. H. V. Huynh and T. J. Meyer, Chem. Rev., 2007, 107,
´
5004–5064; (b) C. Costetin, M. Robert and J.-M. Saveant,
Acc. Chem. Res., 2010, 43, 1019–1029.
1
152 New J. Chem., 2012, 36, 1149–1152
This journal is c The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2012