Dalton Transactions
Paper
δ/ppm = 0.72 (d, J = 6 Hz 2H, NH, br), 1.02 (d J = 6.4 Hz 6H
(CH3)2CH), 3.08–3.12 (m, 1H (CH3)2CH), 5.04 (d J = 2.2 Hz, 1H,
SiH), 7.18–7.21 (m, Ph) 7.55–7.56 (m, Ph). 29Si NMR (+25 °C,
99 MHz), δ/ppm = −24.0.
and R. Waterman, J. Organomet. Chem., 2014, 751, 541–545;
(e) R. J. Less, H. R. Simmonds and D. S. Wright, Dalton
Trans., 2014, 43, 5785–5792.
3 R. J. Less, V. Naseri, M. McPartlin and D. S. Wright, Chem.
Commun., 2011, 47, 6129–6131; T. W. Myers and
L. A. Berben, J. Am. Chem. Soc., 2013, 135, 9988–9990.
4 E. Kroke, Y.-L. Li, C. Konetschny, E. Lecomte, C. Fasel and
R. Riedel, Mat. Sci. Eng: Reports, 2000, 26, 97–199.
5 C. D. F. Konigs, M. F. Muller, N. Aiguabella, H. F. T. Klare
and M. Oestreich, Chem. Commun., 2013, 49, 1506–1508.
6 H. Kono, I. Ojima, M. Matsumoto and Y. Nagai, Org. Prep.
Proced. Int., 1973, 5, 135–139.
7 H. Q. Liu and J. F. Harrod, Can. J. Chem., 1992, 70, 107–
110.
8 W. Xie, H. Hu and C. Cui, Angew. Chem., Int. Ed., 2012, 124,
11303–11306.
t
Entry 4 – PhSiH3 (0.07 ml, 0.60 mmol) followed by BuNH2
(0.10 ml, 0.90 mmol) was added to an NMR tube containing
d8-toluene (0.7 ml). The tube was charged with Al(NMe2)3
(30 mg, 0.18 mmol) and gas evolution was observed immedi-
ately. After 24 hours an PhSiH(tBuNH)(NMe2) (4a), PhSiH-
(NMe2)2 (4b) and PhSiH2(NMe2) (4c) were observed in 17%,
11% and 5% conversion, respectively (the remainder is
unreacted PhSiH3).
1
4a: H NMR (+25 °C 500 MHz), δ/ppm = 1.03 (NH), 1.15 (s,
9H, NtBu) 2.55 (s, 6H, NMe2), 5.13 (d, J = 3 Hz, 1H, SiH),
7.16–7.20 (m, Ph), 7.50–7.58 (m, Ph). 29Si NMR (+25 °C,
99 MHz), δ/ppm = −28.0. 4b: 1H NMR (+25 °C 500 MHz),
δ/ppm = 2.49, (s, 12H, NMe2), 4.97, (s, 1H, SiH2), 7.16–7.20 (m,
Ph) 7.50–7.58 (m,Ph). 29Si NMR (+25 °C, 99 MHz) δ/ppm = −17.
9 J. X. Wang, A. K. Dash, J. C. Berthet, M. Ephritikhine and
M. S. Eisen, J. Organomet. Chem., 2000, 610, 49–57.
4c: 1H NMR (+25 °C, 500 MHz), δ/ppm = 2.43 (s, 6H, NMe2) 10 For example, (a) M. Pérez, C. B. Caputo, R. Dobrovetsky
4.99 (s, 2H, SiH2) 7.16–7.20 (m, Ph), 7.50–7.58 (m,Ph). 29Si
NMR (+25 °C, 99 MHz), δ/ppm = −22.0.
and D. W. Stephan, Proc. Natl. Acad. Sci. U. S. A., 2014, 111,
10917–10921; (b) L. Greb, S. Tamke and J. Paradies, Chem.
Commun., 2014, 50, 2318–2320.
Entry 8 – Ph2SiH2 (0.06 ml, 0.30 mmol) followed by Et2NH
(0.10 ml, 1.20 mmol) were added to a solution of Al(NMe2)3 11 F. Buch and S. Harder, Organometallics, 2007, 26, 5132–
(5 mg, 0.03 mmol) in d8-toluene (0.7 ml). Gas evolution was 5135.
observed upon addition and the NMR tube was heated to 12 Y. Makioka, Y. Tangiguchi, Y. Fugiwara, K. Takaki, Z. Hou
70 °C. Full conversion to Ph2SiHNMe2 (8) was observed. 1H
and Y. Wakatsuki, Organometallics, 1996, 15, 5476–5478.
NMR (+25 °C 500 MHz), δ/ppm = 2.54 (s, 6H) 5.44 (s, 1H) 7.21 13 J. F. Dunne, S. R. Neal, J. Engelkemier, A. Ellern and
(m, 6H) 7.58 (m, 4H). 29Si NMR (+25 °C, 99 MHz) δ/ppm =
−12.0.
A. D. Sadow, J. Am. Chem. Soc., 2011, 133, 16782–16785.
14 M. S. Hill, D. J. Liptrot, D. J. MacDougall, M. F. Mahon and
T. P. Robinson, Chem. Sci., 2013, 4, 4212–4222.
15 R. J. Less, R. L. Melen and D. S. Wright, RSC Adv., 2012, 2,
2191–2199.
Acknowledgements
16 R. J. P. Corriu, D. Leclercq, P. H. Mutin, J. M. Planeix and
A. Vioux, J. Organomet. Chem., 1991, 406, C1–C4.
We thank The EU (ERC Advanced Investigator Grant for D.S.
W., studentship for L.K.A.) and The EU (Marie Curie Intra 17 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb,
European Fellowship for R.G.-R).
A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg,
Organometallics, 2010, 29, 2176–2179.
18 Unfortunately, it was not possible to determine the
equation for the rate of loss of amine with respect to
amine, silane and catalyst concentration because the
Et-resonances for Et2NH overlap with those of the amino-
silane products and the in situ resonances for the catalyst.
Notes and references
1 (a) V. Naseri, R. J. Less, R. E. Mulvey, M. McPartlin and
D. S. Wright, Chem. Commun., 2010, 46, 5000–5002;
(b) K. A. Erickson, L. S. H. Dixon, D. S. Wright and 19 A. E. Nako, S. J. Gates, N. Schadel, A. J. P. White and
R. Waterman, Inorg. Chim. Acta, 2014, 422, 141–145.
M. Crimmin, Chem. Commun., 2014, 50, 9536–9538, and
2 (a) A. J. M. Miller and J. E. Bercaw, Chem. Commun., 2010,
references therein.
46, 1709–1711; (b) D. J. Liptrot, M. S. Hill, M. F. Mahon and 20 F. Buch, J. Brettar and S. Harder, Angew. Chem., Int. Ed.,
D. J. MacDougall, Chem. – Eur. J., 2010, 16, 8508–8515;
2006, 45, 2741–2745.
(c) M. M. Hansmann, R. L. Melen and D. S. Wright, Chem. 21 K. M. Waggoner, M. M. Olmstead and P. P. Power, Poly-
Sci., 2011, 2, 1554–1559; (d) K. A. Erickson, D. S. Wright
hedron, 1990, 9, 257–263.
This journal is © The Royal Society of Chemistry 2015
Dalton Trans.