Synthesis and Characterization of Nearly Monodisperse Pt Nanoparticles
Erken et al.
NPs provide one of the lowest activation energies (Ea =
48.36 kJ/mol) reported among the heterogeneous cata-
lysts tested in the same reaction. The activation enthalpy
16. R. Parsons and T. Vander Noot, J. Electroanal Chem. 9, 257 (1988).
17. T. Iwasita, Electrochim. Acta 47, 3663 (2002).
18. G. Andreadis, S. Song, and P. Tsiakaras, J. Power Sources 157, 657
(2006).
19. J. Wang, S. Wasmus, and R. F. Savinell, J. Electrochem. Soc.
142, 4218 (1995).
20. V. Galvita, G. Semin, V. Belyaev, V. Semikolenov, P. Tsiakaras, and
V. Sobyanin, Appl. Catal. A. 220, 123 (2001).
21. S. Song, W. Zhou, Z. Liang, R. Cai, G. Sun, Q. Xin,
V. Stergiopoulos, and P. Tsiakaras, Appl. Catal. B: Environ. 55, 65
(2005).
22. Z. Qi and A. Kaufman, J. Power Sources 118, 54 (2003).
23. F. Sen, G. Gökag˘aç, and S. Sen, J. Nanopart. Res. 15, 1979 (2013).
24. F. Vigier, S. Rousseau, C. Coutanceau, J. M. Leger, and C. Lamy,
Top Catal. 40, 1 (2006).
(ꢋH= = 45ꢃ82 kJ/mol) and activation entropy (ꢋS=
=
−112ꢃ99 J/mol K) values calculated from the Eyring plots
suggest an associative mechanism for the Pt NPs dehydro-
genation of DMAB.
With the advantages in the ease of synthesis, rela-
tively high activities, catalytic versatility, efficient recov-
ery, and prolonged stability and reusability, Pt NPs offer
a promising approach towards realizing a commercially
viable technology using DMAB as a CO-free, H2 storage
and generation system for fuel cell applications.
25. S. P. Jiang, Z. Liu, H. L. Tang, and M. Pan, Electrochim. Acta
51, 5721 (2006).
26. Z. B. Wang, G. P. Yin, and P. F. Shi, J. Electrochem. Soc. 152, A2406
(2005).
27. V. S. Bogotzky and Y. B. Vassilyev, Electrochim. Acta 12, 1323
(1967).
Acknowledgments: The authors would like to thank
Dumlupinar University (DPU-2014-5) and Duzce Univer-
sity (DUBAP-2014.05.03.243) for the financial support.
28. F. Kadirgan, S. Beyhan, and T. Atilan, Int. J. Hyd. Ener. 34, 4312
(2009).
29. S. Özkar and R. G. Finke, J. Am. Chem. Soc. 124, 5796 (2002).
30. K. J. Laidler, Chemical Kinetics, 3rd edn., Benjamin-Cummings, UK
(1997).
31. H. Eyring, J. Chem. Phys. 3, 107 (1935).
32. Y. Sun, L. Zhuang, J. Lu, X. Hong, and P. Liu, J. Am. Chem. Soc.
129, 15465 (2007).
33. D. Pun, E. Lobkovsky, and P. Chirik, J. Chem. Commun. 44, 3297
(2007).
References and Notes
1. C. Lamy, J.-M. Leꢂger, and S. Srinivasan, Kluwer Academic/Plenum
Publishers, New York (2001), Vol. 34, pp. 53–118.
2. F. Sen, S. Ertan, S. Sen, and G. Gokagac, J. Nanopart. Res. 14, 922
(2012).
3. F. Sen, Z. Ozturk, S. Sen, and G. Gokagac, J. Mater. Sci. 47, 8134
(2012).
4. S. Sen, F. Sen, and G. Gökag˘aç, Phys. Chem. Chem. Phys. 13, 1676
(2011).
34. C. A. Jaska, K. Temple, A. J. Lough, and I. Manners, J. Am.Chem.
5. S. Sen, F. Sen, and G. Gökag˘aç, Phys. DCheelmiv. eCrheemd.bPyhyIsn. 1g3e, n67ta84to: University of Auckland
IP: 5.101.217.13 On: Sun,3055. SPJ.ouTcn.. 1A22.50S,u19m64o20d4j1o(2,:02E0.43J:).4.S9ilva, and T. Rabochai, J. Electroanal. Chem.
(2011).
Copyright: American Scientific Publishers
6. L. Carrette, K. A. Fiedrich, and U. Stimming, Fuel Cells 1, 5 (2001).
7. F. Sen and G. Gökag˘aç, J. Phys. Chem. C 111, 1467 (2007).
8. F. Sen and G. Gökag˘aç, Energy and Fuels 22, 1858 (2008).
9. F. Sen and G. Gökag˘aç, J. Phys. Chem. C 111, 5715 (2007).
10. F. Sen and G. Gökag˘aç, J. Appl. Electrochem. 44, 199 (2014).
11. X. Ren, M.S. Wilson, and S. Gottesfeld, J. Electrochem. Soc. 143, 12
(1996).
12. L. Liu, C. Pu, R. Viswanathan, Q. Fan, R. Liu, E. S. Smotkin, Elec-
trochim Acta 43, 3657 (1998).
13. M. P. Hogarth and G. A. Hards, Platinum Met. Rev. 40, 150 (1996).
14. B. D. McNicol, D. A. J. Rand, and K. R. Williams, J. Power Sources
83, 15 (1999).
271, 305 (1989).
36. T. J. Clark, C. A. Russell, and I. Manners, J. Am. Chem. Soc.
128, 9582 (2006).
37. M. Sloan, T. J. Clark, and I. Manners, Inorg. Chem. 48, 2429 (2009).
38. A. Friendrich, M. Drees, and S. Schneider, J. Chem.-Eur. 15, 10339
(2009).
39. R. J. Keaton, J. M. Blacquiere, and R. T. Baker, J. Am. Chem. Soc.
129, 11936 (2007).
40. Y. Kawano, M. Uruichi, M. Shiomi, S. Taki, T. Kawaguchi,
T. Kakizawa, and H. Ogino, J. Am. Chem. Soc. 131, 14946 (2009).
41. F. Sen, Y. Karatas, M. Gulcan, and M. Zahmakiran, RSC Adv. 4, 1526
(2014).
15. C. Korzeniewski and C. L. Childers, J. Phys. Chem. 102, L489
(1998).
42. A. P. M. Robertson, R. Suter, L. Chabanne, G. R. Whittel,
I. Manners, Inorg. Chem. 50, 12680 (2011).
Received: 30 March 2014. Accepted: 22 April 2015.
5950
J. Nanosci. Nanotechnol. 16, 5944–5950, 2016