Edge Article
Chemical Science
ꢁ
quantitatively within 17 h at 130 C in acetonitrile. Interestingly, Research Council (ERC Starting Grant Agreement no. 336467).
CH OBBN does not form under these conditions and N-methyl- T. C. thanks the Foundation Louis D. – Institut de France for its
3
tetramethylpiperidine was obtained instead in 23% yield, along support.
with H , CO , BBN O and free TMP (eqn (8)). In this reaction,
2
2
2
ꢀ
the formate ligands in 1 serve both as a H and C source for the
21
formation of the N–CH
Interestingly, when the thermolysis of [HNEt
out in the presence of 1 molar equiv. of benzaldehyde,
3
linkage.
Notes and references
+
ꢀ
3
, 1 ] is carried
1 (a) A. Fujii, S. Hashiguchi, N. Uematsu, T. Ikariya and
R. Noyori, J. Am. Chem. Soc., 1996, 118, 2521–2522; (b)
N. Uematsu, A. Fujii, S. Hashiguchi, T. Ikariya and
R. Noyori, J. Am. Chem. Soc., 1996, 118, 4916–4917; (c)
P. Hauwert, G. Maestri, J. W. Sprengers, M. Catellani and
C. J. Elsevier, Angew. Chem., Int. Ed., 2008, 47, 3223–3226;
(d) G. Wienhofer, I. Sorribes, A. Boddien, F. Westerhaus,
K. Junge, H. Junge, R. Llusar and M. Beller, J. Am. Chem.
Soc., 2011, 133, 12875–12879.
PhCH
2
OBBN (10a) is obtained in a 67% yield, further conrm-
ꢀ
ing that bis(formoxy)borate 1 is able to deliver a useful
reducing agent (eqn (9)). The parallel formation of CH OBBN
3
(12% yield) shows that the disproportionation of formates is
ꢀ
a surprisingly facile process from 1 . This result represents the
rst example of reduction of a carbonyl substrate by transfer
hydrogenation from formic acid, under metal-free conditions. It
can also be described as a transfer hydroboration. In fact, the
22
reduction of various aldehydes can be efficiently carried out
2 D. Wang and D. Astruc, Chem. Rev., 2015, 115, 6621–6686.
3 S. J. Blanksby and G. B. Ellison, Acc. Chem. Res., 2003, 36,
255–263.
4 (a) C. Fellay, P. J. Dyson and G. Laurenczy, Angew. Chem., Int.
Ed., 2008, 47, 3966–3968; (b) B. Loges, A. Boddien, H. Junge
and M. Beller, Angew. Chem., Int. Ed., 2008, 47, 3962–3965;
+
ꢀ
with 2 molar equivalents of [HNEt , 1 ]. Under these condi-
3
tions, benzaldehyde is reduced to 10a in 99% yield and bor-
ylethers 10b and 10c were obtained respectively in 99 and 80%
yield from the corresponding aldehydes (eqn (10)).
(
c) B. Loges, A. Boddien, F. G ¨a rtner, H. Junge and
M. Beller, Top. Catal., 2010, 53, 902–914.
5
6
(a) T. C. Johnson, D. J. Morris and M. Wills, Chem. Soc. Rev.,
2010, 39, 81–88; (b) M. Grasemann and G. Laurenczy, Energy
Environ. Sci., 2012, 5, 8171–8181; (c) G. Laurenczy and
P. J. Dyson, J. Braz. Chem. Soc., 2014, 25, 2157–2163.
(a) A. Boddien, B. Loges, F. G ¨a rtner, C. Torborg, K. Fumino,
H. Junge, R. Ludwig and M. Beller, J. Am. Chem. Soc., 2010,
132, 8924–8934; (b) E. A. Bielinski, P. O. Lagaditis,
Y. Zhang, B. Q. Mercado, C. W u¨ rtele, W. H. Bernskoetter,
N. Hazari and S. Schneider, J. Am. Chem. Soc., 2014, 136,
10234–10237.
7
8
T. W. Myers and L. A. Berben, Chem. Sci., 2014, 5, 2771–2777.
C. Chauvier, A. Tlili, C. Das Neves Gomes, P. Thuery and
T. Cantat, Chem. Sci., 2015, 6, 2938–2942.
9
S. Savourey, G. Lefevre, J. C. Berthet, P. Thuery, C. Genre and
T. Cantat, Angew. Chem., Int. Ed., 2014, 53, 10466–10470.
1
0 A. S. Agarwal, Y. Zhai, D. Hill and N. Sridhar, ChemSusChem,
Conclusions
2011, 4, 1301–1310.
In conclusion, we have shown that formic acid can undergo 11 A. J. Miller, D. M. Heinekey, J. M. Mayer and K. I. Goldberg,
disproportionation reactions, using stoichiometric quantities
Angew. Chem., Int. Ed., 2013, 52, 3981–3984.
of dialkylborane reagents. In the coordination sphere of boron, 12 M. C. Neary and G. Parkin, Chem. Sci., 2015, 6, 1859–1865.
formate ligands were decarboxylated to provide borohydride 13 (a) M.-A. Courtemanche, M.-A. L ´e gar ´e , L. Maron and
intermediates, which were successfully utilized to promote the
disproportionation of formates to formaldehyde and methanol
scaffolds and the reduction of aldehydes under metal-free
F.-G. Fontaine, J. Am. Chem. Soc., 2013, 135, 9326–9329; (b)
C. Das Neves Gomes, E. Blondiaux, P. Thuery and
T. Cantat, Chem.–Eur. J., 2014, 20, 7098–7106.
conditions, for the rst time. Current work in our laboratory is 14 H. C. Brown and S. U. Kulkarni, Inorg. Chem., 1977, 16, 3090–
devoted to facilitating the generation of borohydrides from
3094.
formic acid and increasing the hydride donor ability of the 15 In contrast, the combination of [iPr
+
ꢀ
2
EtNH , 1 ] with 9-BBN
and CH OBBN, without
resulting B–H group.
exclusively leads to H
2
C(OBBN)
2
3
involvement of any zwitterionic formaldehyde adduct.
1
6 T. Wang and D. W. Stephan, Chem. Commun., 2014, 50,
Acknowledgements
7007–7010.
For nancial support of this work, we acknowledge CEA, CNRS, 17 Analogously, the thermolysis of the adduct 3 eventually
the CHARMMMAT Laboratory of Excellence and the European
3
affords CH OBBN albeit much faster than 4.
This journal is © The Royal Society of Chemistry 2016
Chem. Sci.