Journal of the American Chemical Society
Article
Efficient Electrocatalyst for CO2 Reduction. Angew. Chem., Int. Ed.
2011, 50, 9903−9906.
(16) Bourrez, M.; Orio, M.; Molton, F.; Vezin, H.; Duboc, C.;
Deronzier, A.; Chardon-Noblat, S. Pulsed-EPR Evidence of a
Manganese(II) Hydroxycarbonyl Intermediate in the Electrocatalytic
Reduction of Carbon Dioxide by a Manganese Bipyridyl Derivative.
Angew. Chem., Int. Ed. 2014, 53, 240−243.
(17) Smieja, J. M.; Sampson, M. D.; Grice, K. A.; Benson, E. E.;
Froehlich, J. D.; Kubiak, C. P. Manganese as a Substitute for Rhenium
in CO2 Reduction Catalysts: the Importance of Acids. Inorg. Chem.
2013, 52, 2484−2491.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by JST CREST Grant Number
JPMJCR13L1. H.T. acknowledges the support from JSPS
KAKENHI grant number JP16K17876.
(18) Sampson, M. D.; Nguyen, A. D.; Grice, K. A.; Moore, C. E.;
Rheingold, A. L.; Kubiak, C. P. Manganese Catalysts with Bulky
Bipyridine Ligands for the Electrocatalytic Reduction of Carbon
Dioxide: Eliminating Dimerization and Altering Catalysis. J. Am.
Chem. Soc. 2014, 136, 5460−5471.
(19) Machan, C. W.; Stanton, C. J.; Vandezande, J. E.; Majetich, G.
F.; Schaefer, H. F.; Kubiak, C. P.; Agarwal, J. Electrocatalytic
Reduction of Carbon Dioxide by Mn(CN)(2,2′-bipyridine)(CO)3:
CN Coordination Alters Mechanism. Inorg. Chem. 2015, 54, 8849−
8856.
(20) Zeng, Q.; Tory, J.; Hartl, F. Electrocatalytic Reduction of
Carbon Dioxide with a Manganese(I) Tricarbonyl Complex
Containing a Nonaromatic α-Diimine Ligand. Organometallics 2014,
33, 5002−5008.
(21) Agarwal, J.; Stanton, C. J., III; Shaw, T. W.; Vandezande, J. E.;
Majetich, G. F.; Bocarsly, A. B.; Schaefer, H.F., III Exploring the Effect
of Axial Ligand Substitution (X = Br, NCS, CN) on the
Photodecomposition and Electrochemical Activity of [MnX(N−
C)(CO)3] Complexes. Dalton Trans. 2015, 44, 2122−2131.
(22) Ngo, K. T.; McKinnon, M.; Mahanti, B.; Narayanan, R.; Grills,
D. C.; Ertem, M. Z.; Rochford, J. Turning on the Protonation-First
Pathway for Electrocatalytic CO2 Reduction by Manganese Bipyridyl
Tricarbonyl Complexes. J. Am. Chem. Soc. 2017, 139, 2604−2618.
(23) (a) Franco, F.; Cometto, C.; Vallana, F. F.; Sordello, F.; Priola,
E.; Minero, C.; Nervi, C.; Gobetto, R. A Local Proton Source in a
[Mn(bpy-R)(CO)3Br]-type Redox Catalyst Enables CO2 Reduction
Even in the Absence of Brønsted Acids. Chem. Commun. 2014, 50,
14670−14673. (b) Franco, F.; Cometto, C.; Nencini, L.; Barolo, C.;
Sordello, F.; Minero, C.; Fiedler, J.; Robert, M.; Gobetto, R.; Nervi, C.
Local Proton Source in Electrocatalytic CO2 Reduction with
[Mn(bpy-R)(CO)3Br] Complexes. Chem. - Eur. J. 2017, 23, 4782−
4793.
REFERENCES
■
(1) Sato, S.; Arai, T.; Morikawa, T. Toward Solar-Driven
Photocatalytic CO2 Reduction Using Water as an Electron Donor.
Inorg. Chem. 2015, 54, 5105−5113.
(2) Sahara, G.; Kumagai, H.; Maeda, K.; Kaeffer, N.; Artero, V.;
Higashi, M.; Abe, R.; Ishitani, O. Photoelectrochemical Reduction of
CO2 Coupled to Water Oxidation Using a Photocathode with a
Ru(II)−Re(I) Complex Photocatalyst and a CoOx /TaON Photo-
anode. J. Am. Chem. Soc. 2016, 138, 14152−14158.
(3) Morimoto, T.; Nishiura, C.; Tanaka, M.; Rohacova, J.;
Nakagawa, Y.; Funada, Y.; Koike, K.; Yamamoto, Y.; Shishido, S.;
Kojima, T.; Saeki, T.; Ozeki, T.; Ishitani, O. Ring-shaped Re(I)
Multinuclear Complexes with Unique Photofunctional Properties. J.
Am. Chem. Soc. 2013, 135, 13266−13269.
(4) Tamaki, Y.; Ishitani, O. Supramolecular Photocatalysts for the
Reduction of CO2. ACS Catal. 2017, 7, 3394−3409.
(5) IPCC, 2014: Summary for Policymakers. Climate Change 2014:
Mitigation of Climate Change. Contribution of Working Group III to the
Fifth Assessment Report of the Intergovernmental Panel on Climate
Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E.,
Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier,
P., Kriemann, B., Savolainen, J., Schlomer, S., von Stechow, C.,
Zwickel, T., Minx, J. C., Eds.; Cambridge University Press:
Cambridge, United Kingdom, New York, 2014.
(6) Rumble, J. R. CRC Handbook of Chemistry and Physics, 98th ed.;
Taylor & Francis Group: Boca Raton, FL, 2017.
̈
(7) Matsuoka, S.; Yamamoto, K.; Ogata, T.; Kusaba, M.; Nakashima,
N.; Fujita, E.; Yanagida, S. Efficient and Selective Electron Mediation
of Cobalt Complexes with Cyclam and Related Macrocycles in the p-
Terphenyl-Catalyzed Photoreduction of Carbon Dioxide. J. Am.
Chem. Soc. 1993, 115, 601−609.
(8) Takeda, H.; Cometto, C.; Ishitani, O.; Robert, M. Electrons,
Photons, Protons and Earth-Abundant Metal Complexes for
Molecular Catalysis of CO2 Reduction. ACS Catal. 2017, 7, 70−88.
(9) Takeda, H.; Ohashi, K.; Sekine, A.; Ishitani, O. Photocatalytic
CO2 Reduction Using Cu(I) Photosensitizers with a Fe(II) Catalyst.
J. Am. Chem. Soc. 2016, 138, 4354−4357.
(24) Rawat, K. S.; Mahata, A.; Choudhuri, I.; Pathak, B. N-
Heterocylic Carbene-Based Mn Electrocatalyst for Two-Electron CO2
Reduction over Proton Reduction. J. Phys. Chem. C 2016, 120, 8821−
8831.
(25) Takeda, H.; Koizumi, H.; Okamoto, K.; Ishitani, O.
Photocatalytic CO2 Reduction Using a Mn Complex as a Catalyst.
Chem. Commun. 2014, 50, 1491−1493.
(10) Lazorski, M. S.; Castellano, F. N. Advances in the Light
Conversion Properties of Cu(I)-Based Photosensitizers. Polyhedron
2014, 82, 57−70.
(26) Cheung, P. L.; Machan, C. W.; Malkhasian, A. Y. S.; Agarwal, J.;
Kubiak, C. P. Photocatalytic Reduction of Carbon Dioxide to CO and
HCO2H Using fac-Mn(CN)(bpy)(CO)3. Inorg. Chem. 2016, 55,
3192−3198.
́
(11) Rosas-Hernandez, A.; Steinlechner, C.; Junge, H.; Beller, M.
Earth-abundant Photocatalytic Systems for the Visible-Light-Driven
Reduction of CO2 to CO. Green Chem. 2017, 19, 2356−2360.
́
(27) Stanbury, M.; Compain, J. D.; Trejo, M.; Smith, P.; Goure, E.;
́
̀
(12) Guo, Z.; Cheng, S.; Cometto, C.; Anxolabehere-Mallart, E.; Ng,
S. M.; Ko, C. C.; Liu, G.; Chen, L.; Robert, M.; Lau, T. C. Highly
Efficient and Selective Photocatalytic CO2 Reduction by Iron and
Cobalt Quaterpyridine Complexes. J. Am. Chem. Soc. 2016, 138,
9413−9416.
Chardon-Noblat, S. Electrochimica Acta Mn-Carbonyl Molecular
Catalysts Containing a Redox-Active Phenanthroline-5,6-Dione for
Selective Electro- and Photoreduction of CO2 to CO or HCOOH.
Electrochim. Acta 2017, 240, 288−299.
(28) Zhang, J. X.; Hu, C. Y.; Wang, W.; Wang, H.; Bian, Z. Y. Visible
Light Driven Reduction of CO2 Catalyzed by an Abundant
Manganese Catalyst with Zinc Porphyrin Photosensitizer. Appl.
Catal., A 2016, 522, 145−151.
(29) There should be other reactions of BIH during this
photocatalytic reaction condition, that is, high concentration of BIH
(0.1 M) because, in the case using 10 times lower concentration of
BIH, almost all of the consumed BIH was converted to two-electron
oxidation product, that is, BI+ (eq 1).
(13) Rao, H.; Schmidt, L. C.; Bonin, J.; Robert, M. Visible-Light-
Driven Methane Formation from CO2 with a Molecular Iron Catalyst.
Nature 2017, 548, 74−77.
(14) Bonin, J.; Robert, M.; Routier, M. Selective and Efficient
Photocatalytic CO2 Reduction to CO Using Visible Light and an
Iron-Based Homogeneous Catalyst. J. Am. Chem. Soc. 2014, 136,
16768−16771.
(15) Bourrez, M.; Molton, F.; Chardon-Noblat, S.; Deronzier, A.
[Mn(bipyridyl)(CO)3Br]: An Abundant Metal Carbonyl Complex as
M
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX