2
06
ELMASIDES ET AL.
it could be assumed that the dissociation ofCH4 and the pro- tion site that seems to be necessary for the reaction to
duction of CO take place in the same surface-active sites proceed.
S1. An indication that supports the assumption of CH4 dis-
sociation and the adsorption of CO at the same active site
is the frequency shift of the peak when the conditions are
REFERENCES
favorable for carbon deposition (Fig. 5). The absence of ad-
sorbed oxygen on adjacent sites allows desorption of CO
without further oxidation at these sites.
1
2
3
4
. Pena, M. A., Gomez, J. P., and Fierro, J. L. G., Appl. Catal. A 144, 7
(1996).
. Mallens, E. P. J., Hoebink, J. H. B. J., and Marin, G. B., J. Catal. 167,
43 (1997).
The appearance and relative intensityofthe 1985-(1995-)
. Fathi, M., Monnet, F., Schuurman, Y., Holmen, A., and Mirodatos, C.,
J. Catal. 190, 439 (2000).
. Buyevskaya, O. V., Walter, K., Wolf, D., and Baerns, M., Catal. Lett.
38, 81 (1996).
�
1
cm peak under reaction conditions may be related to the
catalytic performance of the Ru catalysts examined. As ob-
served in Fig. 5, this band is present over the undoped and
2
+
5. Torniainen, P. M., Chu, X., and Schmidt, L. D., J. Catal. 146, 1 (1994).
6. Qin, D., Lapszewicz, J., and Jiang, X., J. Catal. 159, 140 (1996).
7. Tian, Z., Dewaele, O., and Marin, G. B., Catal. Lett. 57, 9 (1999).
8. Soick, M., Buyevskaya, O. V., H o¨ henberger, M., and Wolf, D., Catal.
Today 32, 163 (1996).
Ca -doped catalysts, which are highly active and selective
toward synthesis gas formation and over which the metal
mainly exists in its reduced form. The high selectivity ob-
tained over these catalysts strengthens the view that these
species survive and desorb from the catalyst surfaces with-
9. Dissanayake, D., Rosynek, M. P., Kharas, K. C. C., and Lunsford, J. H.,
J. Catal. 132, 117 (1991).
0. Hu, Y. H., and Ruckenstein, E., J. Catal. 158, 260 (1996).
1. Boucouvalas, Y., Zhang, Z. L., Efstathiou, A. M., and Verykios, X. E.,
Stud. Surf. Sci. Catal. 101, 443 (1996).
6+
out being further oxidized. In contrast, over the W -doped
catalyst, which is much less active and selective and which
under reaction conditions mainly exists in oxidized forms,
such IR bands are absent.
1
1
1
1
1
1
1
2. Boucouvalas, Y., Zhang, Z. L., and Verykios, X. E., Catal. Lett. 40, 189
(
1996).
3. Elmasides, C., Kondarides, D. I., Gr u¨ enert, W., and Verykios, X. E.,
J. Phys. Chem. B 103, 5227 (1999).
4. Fuggle, J. C., Madey, T. E., Steinkilberg, M., and Menzel, D., Surf. Sci.
2, 521 (1975).
5. Chan, H. Y. H., Takoudis, C. G., and Weaver, J., J. Catal. 172, 336
1997).
6. Johnson, E. E., and Ratner, B. D., J. Electron Spectrosc. Related Phe-
nom. 81, 303 (1996).
5
. CONCLUSIONS
The following conclusions may be drawn from the results
of the present study:
5
(
1
. Under conditions where the direct route for the partial
oxidation of methane to synthesis gas formation is operable
(
XCH < 35% ), the catalytic performance of Ru/TiO2 cata- 17. Sabbatini, L., and Zambonin, P. G., J. Electron Spectrosc. Related Phe-
4
nom. 81, 285 (1996).
lysts is improved upon doping of TiO2 with small amounts
of Ca cations, while the opposite is true upon doping with
W
2
+
18. Hadjiivanov, K., Lavalley, J. C., Lamotte, J., Maug e´ , F., Saint-Just, V.,
and Che, M., J. Catal. 176, 415 (1998).
6
+
cations.
1
2
9. Yokomizo, G. H., Louis, C., and Bell, A. T., J. Catal. 120, 1 (1989).
0. Gupta, N. M., Kamble, V. S., Iyer, R. M., Ravindranathan Thampi, K.,
and Gratzel, M., J. Catal. 137, 473 (1992).
2
. The oxidation state of ruthenium depends strongly on
the reaction temperature and, under reaction conditions,
the fraction of metallic Ru increases with increasing tem-
perature. This is accompanied by increased selectivities to-
ward CO and H2 formation, indicating that Ru(0) sites are
necessary for the reaction to proceed.
2
2
2
1. Robbins, J. L., J. Catal. 115, 120 (1989).
2. Chen, H. W., Zhong, Z., and White, J. M., J. Catal. 90, 119 (1984).
3. Van Looij, F., van Giezen, J. C., Stobbe, E. R., and Geus, J. W., Catal.
Today 21, 495 (1994).
2
2
2
2
4. Nakagawa, K., Ikenaga, N., Suzuki, T., Kobayashi, T., and Haruta, M.,
Appl. Catal. A 169, 281 (1998).
5. Elmasides, C., Ioannides, T., and Verykios, X. E., AIChE J. 46, 1260
3
. Altervalent cation doping of TiO2 results in significant
changes in the oxidation state of supported Ru, which is
reflected in its catalytic performance. In particular, doping
(
2000).
6. Wang, D., Dewaele, O., De Groote, A. M., and Froment, G. F., J. Catal.
59, 418 (1996).
7. Au, C. T., and Wang, H. Y., J. Catal. 167, 337 (1997).
with W6 cations results in the stabilization of a portion of
+
1
Ru in its oxide forms under reaction conditions and, con-
comitantly, in lower methane conversions and lower selec- 28. Wang, H. Y., and Ruckenstein, E., Catal. Lett. 59, 121 (1999).
9. Au, C-T., Liao, M-S., and Ng, C-F., J. Phys. Chem. A 102, 3959 (1998).
30. Wang, D., Dewaele, O., and Froment, G. F., J. Mol. Catal. A 136, 301
1998).
1. Koerts, T., Deelen, M. J. A. G., and van Santen, R. A., J. Catal. 138,
01 (1992).
32. Valden, M., Xiang, N., Pere, J., and Pessa, M., Appl. Surf. Sci. 99, 83
1996).
33. Valden, M., Pere, J., Xiang, N., and Pessa, M., Chem Phys. Lett. 257,
89 (1996).
4. Belton, D. N., Sun, Y. M., and White, J. M, J. Phys. Chem. 88, 5172
1984).
2
tivities toward CO and H2 formation compared to the un-
doped catalyst. In contrast, doping of the carrier with Ca2
+
(
cations results in stabilization of Ru in its metallic form
and, thus, to enhanced catalytic performance with respect
to activity and selectivity for CO and H2 formation.
3
1
(
4
. In situ FTIR results show that an adsorbed CO species
2+
exists on the surface of the undoped and Ca -doped cat-
alysts under reaction conditions, even at temperatures as
high as 1073 K. This species, which is not observable over
2
3
(
the W6 -doped catalyst, may be related to an adsorp- 35. Solymosi, F., Tombacz, I., and Kocsis, M., J. Catal. 75, 78 (1982).
+