Published on Web 12/15/2008
Ammonia Triborane: A New Synthesis, Structural
Determinations, and Hydrolytic Hydrogen-Release Properties
Chang Won Yoon, Patrick J. Carroll, and Larry G. Sneddon*
Department of Chemistry, UniVersity of PennsylVania, Philadelphia, PennsylVania 19104-6323
Received October 17, 2008; E-mail: lsneddon@sas.upenn.edu
Abstract: Iodine oxidation of B3H8- in glyme solution to produce (glyme)B3H7, followed by displacement of
the coordinated glyme by reaction with anhydrous ammonia provides a safe and convenient preparation of
ammonia triborane, NH3B3H7 (1). X-ray crystallographic determinations and DFT computational studies of
both NH3B3H7 and the NH3B3H7 ·18-crown-6 adduct demonstrate that while computations predict a symmetric
single bridging-hydrogen conformation, NH3B3H7 has a highly asymmetric structure in the solid-state that
results from intermolecular N-H+ · · ·H--B dihydrogen bonding interactions. Studies of its hydrolytic reactions
have shown that upon the addition of acid or an appropriate transition metal catalyst, aqueous solutions of
1 rapidly release hydrogen, with 6.1 materials wt % H2-release being achieved from a 22.7 wt % aqueous
solution of 1 at room temperature in the presence of 5 wt % Rh/Al2O3 (1.1 mol% Rh). The rate of H2-
release was controlled by both the catalyst loadings and temperature.
Introduction
materials wt % H2) or thermolysis, eq 2, (17.7 materials wt %
H2) also makes it an attractive candidate for chemical hydrogen
Owing to their high hydrogen densities, boron-based com-
pounds, such as sodium borohydride (NaBH4) and ammonia
borane (NH3BH3), are now being intensively investigated as
chemical hydrogen storage materials that can release hydrogen
by either hydrolytic1,2 or thermolytic processes.3
storage.
NH3B3H7 + 6H2O f NH+4 + 3BO2 + 2H+ + 8H2
NH3B3H7f“B3N” + 5H2
(1)
(2)
The high hydrogen release capacity that could potentially be
achieved by ammonia triborane oxidative-hydrolysis, eq 1, (9.7
Although Kodama first synthesized4 NH3B3H7 over 50 years
ago, owing to the lack of a suitable method for its efficient and
safe synthesis, its reactivities and properties have not been
intensively explored. Of the fewer than 30 previous publications
on 1, many were stimulated by the apparent contradiction
between the computational studies5 that predict a symmetric
single hydrogen-bridged CS-symmetric structure, and the early
single crystal X-ray determination6 of 1 that showed an
asymmetric structure with perhaps two bridging-hydrogens.
In this paper we present (1) a new, efficient preparation of 1
that now makes this compound easily available; (2) a new
crystallographic study of the solid-state structure of 1, along
with a structural determination of the 1·18-crown-6 adduct, that
(1) For examples of NaBH4 hydrolytic H2-release reactions, see: (a)
Amendola, S. C.; Sharp-Goldman, S. L.; Janjua, M. S.; Kelly, M. T.;
Petillo, P. J.; Binder, M. J. Power Sources 2000, 85, 186–189. (b)
Amendola, S. C.; Sharp-Goldman, S. L.; Janjua, M. S.; Spencer, N. C.;
Kelly, M. T.; Petillo, P. J.; Binder, M. Int. J. Hydrogen Energy 2000,
25, 969–975. (c) Kojima, Y.; Suzuki, K.; Fukumoto, K.; Sasaki, M.;
Yamamoto, T.; Kawai, Y.; Hayashi, H. Int. J. Hydrogen Energy 2002,
27, 1029–1034. (d) Dong, H.; Yang, H.; Ai, X.; Cha, C. Int. J.
Hydrogen Energy 2003, 28, 1095–1100. (e) Jeong, S. U.; Kim, R. K.;
Cho, E. A.; Kim, H.-J.; Nam, S.-W.; Oh, I.-H.; Hong, S. -A.; Kim,
S. H. J. Power Sources 2005, 144, 129–134. (f) Krishnan, P.; Yang,
T.-H.; Lee, W.-Y.; Kim, C.-S. J. Power Sources 2005, 143, 17–23.
(g) Wee, J.-H.; Lee, K.-Y.; Kim, S. H. Fuel Process. Technol. 2006,
87, 811–819.
(2) For examples of amineborane hydrolytic H2-release reactions, see: (a)
Kelly, H. C.; Marriott, V. B. Inorg. Chem. 1979, 18, 2875–2878. (b)
Shvets, I. B.; Erusalimchik, I. G. Elektrokhimiya 1984, 20, 535–537.
(c) D’Ulivo, A.; Onor, M.; Pitzalis, E. Anal. Chem. 2004, 76, 6342–
6352. (d) Storozhenko, P. A.; Svitsyn, R. A.; Ketsko, V. A.; Buryak,
A. K.; Ul’yanov, A. V. Zh. Neorg. Khim. 2005, 50, 1066–1071. (e)
Chandra, M.; Xu, Q. J. Power Sources 2006, 156, 190–194. (f)
Chandra, M.; Xu, Q. J. Power Sources 2006, 159, 855–860. (g) Xu,
Q.; Chandra, M. J. Power Sources 2006, 163, 364–370. (h) Mohajeri,
N.; Adebiyi, O.; Baik, J.; Bokerman, G.; T-Raissi, A. Prepr. Pap.-
Am. Chem. Soc., DiV. Fuel Chem. 2006, 51, 520–521. (i) Chandra,
M.; Xu, Q. J. Power Sources 2007, 168, 135–142. (j) Cheng, F.; Ma,
H.; Li, Y.; Chen, J. Inorg. Chem. 2007, 46, 788–794. (k) Mohajeri,
N.; T-Raissi, A.; Adebiyi, O. J. Power Sources 2007, 167, 482–485.
(l) Clark, T. J.; Whittell, G. R.; Manners, I. Inorg. Chem. 2007, 46,
7522–7527. (m) Kalidindi, S. B.; Indirani, M.; Jagirdar, B. R. Inorg.
Chem. 2008, 47, 7424–7429. (n) Yan, J.-M.; Zhang, X.-B.; Han, S.;
Shioyama, H.; Xu, Q. Angew. Chem., Int. Ed. 2008, 47, 2287–2289.
(o) Yoon, C. W.; Sneddon, L. G. J. Am. Chem. Soc. 2006, 128, 13992–
13993.
(3) For examples of amineborane thermolytic H2-release reactions, see:
Stephens, F. H.; Pons, V.; Baker, R. T. Dalton Trans. 2007, 2613–
2626, and references therein.
(4) (a) Kodama, G. Ph.D. Dissertation 1957, University of Michigan. (b)
Kodama, G.; Parry, R. W. Proc. XVI Int. Congress Pure Appl. Chem.
1957, 482–489. (c) Kodama, G.; Parry, R. W.; Carter, J. C. J. Am.
Chem. Soc. 1959, 81, 3534–3538.
(5) (a) Brown, L. D.; Lipscomb, W. N. Inorg. Chem. 1977, 16, 1–7. (b)
McKee, M. L. Inorg. Chem. 1988, 27, 4241–4245. (c) Mebel, A. M.;
Musaev, D. G.; Morokuma, K. Chem. Phys. Lett. 1993, 214, 69–76.
(d) Es-sofi, A.; Serrar, C.; Ouassas, A.; Jarid, A.; Boutalib, A.; Nebot-
Gil, I.; Toma´s, F. J. Phys. Chem. A 2002, 106, 9065–9070. (e) Nguyen,
V. S.; Matus, M. H.; Nguyen, M. T.; Dixon, D. A. J. Phy. Chem. C
2007, 111, 9603–9613. (f) Subotnik, J. E.; Sodt, A.; Head-Gordon,
M. Phys. Chem. Chem. Phys. 2007, 9, 5522–5530. (g) Sundberg,
M. R.; Sanchez-Gonzalez, A. Inorg. Chem. Commun. 2007, 10, 1229–
1232.
(6) Nordman, C. E.; Reimann, C. J. Am. Chem. Soc. 1959, 81, 3538–
3543.
9
10.1021/ja808045p CCC: $40.75
2009 American Chemical Society
J. AM. CHEM. SOC. 2009, 131, 855–864 855