–
W-BASED CATALYSTS SUPPORTED ON Al2O3 TiO2 MIXED OXIDES
121
accompanied by the formation of oxopolytungstates. Sec-
REFERENCES
ond, the incorporation of titania to the alumina support
results in a change in the level of interaction between the
support and the tungsten phases in both the oxidic and the
sulfided state, which leads to more reducible and quite pos-
sibly more sulfidable tungsten species. Third, the titania
rich catalysts seem to lead to well dispersed oxidic tung-
sten species which promote slightly large WS2 crystallites
than for alumina but with a low level of stacking.
Finally, it is also quite possible that the drastic increase
in activity observed for the pure titania supported catalyst
may be also due to the role that the sulfided titania surface
plays in the reaction mechanism in which quite possibly acts
as a promoter.
1. Ram´ırez, J., Fuentes, S., Dı´az, G., Vrinat, M., Breysse, M., and Lacroix,
M., Appl. Catal. 52, 211 (1989).
2. Thomas, R., De Beer, V. H. J., and Moulijn, J. A., Bull. Soc. Chim.
Belg. 90, 1349 (1981).
3. Chappell, P. J. C., Kibel, M. H., and Baker, B. G., J. Catal. 110, 139–149
(1988).
4. Salvati, L., Makovsky, L. E., Stencel, J. M., Brown, F. R., and Hercules,
D. M., J. Phys. Chem. 85, 3700 (1981).
5. Chan, S. S., Wachs, I. E., Murrell, L. L., and Dispenziere, N. C., Jr.,
J. Catal. 92, 1 (1985).
6. Grunert, W., Shpiro, E. S., Feldhaus, R., Anders, K., Antoshin, G. V.,
and Minachev, K. H. M., J. Catal. 107, 522 (1987).
7. Breysse, M., et al., Catal. Today 4, 39 (1988).
8. Grimblot, J., Gengembre, L., and D’Huysser, A., J. Electron. Spectrosc.
Related Phenom. 52, 485 (1990).
9. Lo´pez-Agudo, A., Benı´tez-Patricio, A., Ramı´rez Sol´ıs, J. F., and
Va´zquez, A., “13th North American Meeting of the Catalysis Soci-
ety, Pittsburgh, PA, 1993,” Abstract B-42.
10. Zhaobin, W., Qin, X., Xiexian, G., Grange, P., and Delmon, B., Appl.
Catal. 75, 179 (1991).
CONCLUSIONS
From all the above results, the following conclusions can
be drawn:
11. Ramı´rez, J., Ruiz-Ramı´rez, L., Ceden˜o, L., Harle, V., Vrinat, M., and
Breysse, M., Appl. Catal. 93, 163 (1993).
12. Iannibello, A., Villa, P. L., and Marengo, S., Gazz. Chim. Ital. 109,
150–1 (1979).
13. Tittarelli, P., Iannibello, A., and Villa, P. L., J. Solid State Chem. 37, 95
(1981).
–
1. In the Al Ti(x) supports, it is only at the high titania
loading above x = 0.7 that anatase segregates forming crys-
tallites detectable by XRD.
2. The support composition and physicochemical proper-
ties, determine the type of oxotungsten species present on
the surface, leading to a gradual change from tetrahedral
species present on alumina to octahedral species present on
titania.
3. The degree of reducibility of the oxotungsten species
seems to be a consequence of the level of interaction with
the support and also, possibly, to the role of the reduced or
sulfided layer of titanium present on the surface.
4. The presence of titania in the support seems to lead to
oxotungstate species with greater lateral interaction which
affect the size and the level of stacking of the WS2 crystal-
lites in the rich titania catalysts.
5. The observed changes in catalytic activity seem to be
the result of changes in the interaction between the surface
tungsten species and the support which leads to different
surface species on the oxidic precursors and these in turn
lead to a different morphology and quite possibly, different
levels of sulfidation in the final sulfided tungsten species.
It is quite possible that the enhanced activity of the tita-
nia supported catalyst is due to the role that the sulfided
layer of titania plays in the mechanism of the HDS reac-
tion, since no drastic change in the nature of the tungsten
surface species either in the oxidic or sulfided state can ac-
count for the observed sharp increase in activity present in
the pure titania supported sample.
14. Wachs, I. E., Chersich, C. C., and Hardenbergh, J. H., Appl. Catal. 13,
335 (1985).
15. Carver, J. C., Wachs, J. C., and Murrell, L. L., J. Catal. 100, 500 (1986).
16. Horsley, J. A., Wachs, I. E., Brown, J. M., Via, G. H., and Hardcastle,
F. D., J. Phys. Chem. 91, 4014 (1987).
17. Vermaire, D., and Berge, P. V., J. Catal. 116, 309 (1989).
18. Brady, R. L., Southmayd, D., Contescu, C., Zhang, R., and Schwarz,
J. A., J. Catal. 129, 195 (1991).
19. Payen, E., Hubaut, R., Kasztelan, S., Poulet, O., and Grimblot, J.,
J. Catal. 147, 123 (1994).
20. Zhang, R., Jagiello, J., Hu, J. F., Huang, Z. Q., and Schwarz, J. A., Appl.
Catal. 84, 123 (1992).
21. Stencel, J. M., Makovsky, L. E., Diehl, J. R., and Sarkus, T., J. Raman
Spectrosc. 15, 282 (1984).
22. Chan, S. S., Wachs, I. E., and Murrell, L. L., J. Catal. 90, 150 (1984).
23. Thomas, R., Kerkhof, F. P., Moulijn, M., Medema, J., and De Beer,
V. H., J. Catal. 61, 559 (1980).
24. Murrell, L. L., Grenoble, D. C., Baker, R., Prestidge, E. B., Fung,
S. C., Chianelli, R. R., and Cramer, S. P., J. Catal. 79, 203 (1983).
25. Engweiler, J., Wharf, J., and Baker, A., J. Catal. 159, 259 (1996).
26. Can, S. S., Watches, I. E., Mural, L. L., Wang, L., and Hall, W. K.,
J. Phys. Chem. 88, 5831 (1984).
27. Hilbrig, F., Go¨bel, H. E., Kno¨zinger, H., Schmelz, H., and Lengeler,
B., J. Phys. Chem. 95, 6973 (1991).
28. Scheffer, B., Molhock, P., and Moulijn, J. A., Appl. Catal. 46, 11 (1989).
29. Ramis, G., Busca, G., Cristiani, C., Lietti, L., Forzatti, P., and Bregani,
F., Langmuir 8, 1744 (1992).
30. Vuurman, M. A., Wachs, I. E., and Hirt, A. M., J. Phys. Chem. 95, 9928
(1991).
31. Deo, G., and Wachs, I. E., J. Phys. Chem. 95, 5889 (1991).
32. Kim, D. S., Ostromecki, M., and Wachs, I. E., J. Mol. Catal. 106, 93
(1996).
33. Wachs, I. E., Catal. Today 27, 437 (1996).
ACKNOWLEDGMENTS
34. Arnoldy, P., Jonge, J. C., and Moulijn, J. A., J. Phys. Chem. 89, 4517
(1985).
The financial support from PEMEX-Refinacio´n and DGAPA-UNAM
is gratefully acknowledged.
35. Scheffer, B., Heijeinga, J. J., and Moulijn, J. A., J. Phys. Chem. 91, 4752
(1987).