InVestigations on Coupling with Alkenyl Phosphates
SCHEME 1. Suzuki-Miyaura Couplings with Alkenyl
and more expensive alkenyl triflate or nonaflates. However, in
this case attention has often been devoted to the R,â-unsaturated
carbonyl compounds or R-heteroatom substituted alkenyl coun-
terparts where the oxidative addition step occurs more readily
using a triaryl phosphine ligated Pd or Ni catalyst. Expansion
of this class of substrates to include the nonactivated alkenyl
counterparts has received less attention undoubtedly because
of the more difficult oxidative addition step and hence higher
requirements to the catalytic system.
Phosphates
TABLE 1. Optimization of Suzuki Couplings of Alkenyl
Phosphates with Phenylboronic Acid
In a previous report with nonactivated alkenyl phosphates
and tosylates, we disclosed an efficient procedure for promoting
the Heck coupling with electron-deficient alkenes.12 Particularly
the alkenyl phosphates proved their usefulness, displaying higher
stability than their tosylate and triflate/nonaflate counterparts
with no sign of decomposition after being stored for months at
-18 °C or being heated at 100 °C in DMF for 24 h. In our
pursuit to unveil the full potential of these nonactivated alkenyl
phosphate as substrates in metal-catalyzed transformations, a
Base and Temp Conversion
Entry
Metal
Ligand
Additive °Ca (Yield) of 2b
1
2
Ni(COD)2 (4%) HBF4Cy3P (8%)
Pd2dba3 (2.5%) X-Phos (10%)
K3PO4
K3PO4 +
LiCl
65 83% (75%)
70 8%
d
3
Pd2dba3 (2.5%) HBF4(t-Bu)3P (10%) K3PO4 + 100c
-
LiCl
4
Ni(COD)2 (5%) HBF4Cy3P (10%)
K3PO4
75 100% (97%)
(4) (a) Milne, J. E.; Buchwald, S. L. J. Am. Chem. Soc. 2004, 126, 13028.
(b) Kantchev, E. A. B.; O’Brian, C. J.; Organ, M. G. Angew. Chem., Int.
Ed. 2007, 46, 2768. (c) Barder, T. E.; Walker, S. D.; Martinelli, J. R.;
Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685. (d) Billingsley, K. L.;
Anderson, K. W.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 3484.
(e) Littke, A. F.; Dai, C.; Gu, G. C. J. Am. Chem. Soc. 2000, 122, 4020. (f)
Peyroux, E.; Berthiol, F.; Doucet, H.; Santelli, M. Eur. J. Org. Chem. 2004,
1075. (g) Zapf, A.; Ehrentraut, A.; Beller, M. Angew. Chem., Int. Ed. 2000,
39, 4153. (h) Zapf, A.; Beller, M. Chem.-Eur. J. 2001, 7, 2908. (i) Lee,
M.-T.; Lee, H. M.; Hu, C.-H. Organometallics 2007, 26, 1317. (j) Cho,
S.-D.; Kim, H.-K.; Yim, H.; Kim, M.-R.; Lee, J.-K.; Kim, J.-J.; Yoon, Y.-
J. Tetrahedron 2007, 63, 1345. (k) Barder, T. E. J. Am. Chem. Soc. 2006,
128, 898. (l) Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N.
M.; Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101. (m) Dupont, J.;
Consorti, C. S.; Spencer, J. Chem. ReV. 2005, 105, 2527.
(5) (a) Steinhuebel, D.; Baxter, J. M.; Palucki, M.; Davies, I. W. J. Org.
Chem. 2005, 70, 10124. (b) Jiang, J.; DeVita, R. J.; Doss, G. A.; Goulet,
M. T.; Wyvratt, M. J. J. Am. Chem. Soc. 1999, 121, 593. (c) Buon, C.;
Bouyssou, P.; Coudert, G. Tetrahedron Lett. 1999, 40, 701. (d) Nicolaou,
K. C.; Shi, G.-Q.; Gunzner, J. L.; Ga¨rtner, P.; Yang, Z. J. Am. Chem. Soc.
1997, 119, 5467.
(6) (a) Wiskur, S. L.; Korte, A.; Fu, G. C. J. Am. Chem. Soc. 2004, 126,
82. (b) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 12527. (c) Wu, J.;
Yang, Z. J. Org. Chem. 2001, 66, 7875. (d) Nicolaou, K. C.; Shi, G.-Q.;
Namoto, K.; Bernal, F. Chem. Commun. 1998, 1757.
(7) (a) Hansen, A. L.; Ebran, J.-P.; Gøgsig, T. M.; Skrydstrup, T. Chem.
Commun. 2006, 4137. (b) Tang, Z.-Y.; Spinella, S.; Hu, Q.-S. Tetrahedron
Lett. 2006, 47, 2427. (c) Baxter, J. M.; Steinhuebel, D.; Palucki, M.; Davies,
I. W. Org. Lett. 2005, 7, 215. (d) Larsen, U. S.; Martiny, L.; Begtrup, M.
Tetrahedron Lett. 2005, 46, 4261. (e) Tang, Z.-Y.; Hu, Q.-S. J. Am. Chem.
Soc. 2004, 126, 3058. (f) Campbell, I. B.; Guo, J.; Jones, E.; Steel, P. G.
Org. Biomol. Chem. 2004, 2, 2725. (g) Nguyen, H. N.; Huang, X.;
Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11818. (h) Netherton, M.
R.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 3190. (i) Wu, J.; Wang, L.;
Fathi, R.; Yang, Z. Tetrahedron Lett. 2002, 43, 4395. (j) Zim, D.; Lando,
V. R.; Dupont, J.; Monteiro, A. L. Org. Lett. 2001, 3, 3049. (k) Lepifre, F.;
Clavier, S.; Bouyssou, P.; Coudert, G. Tetrahedron 2001, 57, 6969. (l) Nan,
Y.; Yang, Z. Tetrahedron Lett. 1999, 40, 3321. (m) Percec, V.; Bae, J.-Y.;
Hill, D. H. J. Org. Chem. 1995, 60, 1060.
(8) (a) Ackermann, L.; Althammer, A. Org. Lett. 2006, 8, 3457. (b)
Limmert, M. E.; Roy, A. H.; Hartwig, J. F. J. Org. Chem. 2005, 70, 9364.
(c) Roy, A. H.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 8704. (d)
Baker, W. R.; Pratt, J. K. Tetrahedron 1993, 39, 8739. (e) Hayashi, T.;
Fujiwa, T.; Okamoto, Y.; Katsuro, Y.; Kumada, M. Synthesis 1981, 1001.
(f) Cahiez, G.; Avedissian, H. Synthesis 1998, 1199.
a Reactions were run in sealed sample vials. b Conversions were deter-
1
mined by H NMR spectroscopy. Isolated yield after column chromatog-
raphy. c Reaction run in toluene. d No reaction.
direct synthesis of 1,1-diaryl alkenes by a Ni(0)-catalyzed
Suzuki-Miyaura coupling was developed (Scheme 1).7a The
combination of easily accessible aromatic vinyl phosphates and
the vast number of commercially available aryl boronic acids
provided easy access to unsymmetrical diaryl alkenes with
generally good yields.
Since 1,1-disubstituted alkenes and their saturated counter-
parts represent an important structural motif in organic synthesis
and biologically active compounds, it would be desirable if the
above-mentioned method could be expanded to include not only
1,1-diaryl alkenes but also the corresponding 1-aryl-1-alkyl and
1,1-dialkyl alkenes.13 Different methods are presented in the
literature, and Wittig reactions or addition of Grignard reagents
to the aryl or alkyl ketone followed by dehydration represent
the most general approaches.14 Some examples exploiting known
metal-catalyzed cross-couplings are presented, but they often
(13) For unsaturated examples, see: 1,1′-diaryl alkenes: (a) Faul, M.
M.; Ratz, A. M.; Sullivan, K. A.; Trankle, W. G.; Winneroski, L. L. J.
Org. Chem. 2001, 66, 5772. (b) Nussbaumer, P.; Dorsta¨tter, G.; Grassberger,
M. A.; Leitner, I.; Meingassner, J. G.; Thirring, K.; Stu¨tz, A. J. Med. Chem.
1993, 36, 2115. (c) Barda, D. A.; Wang, Z.-Q.; Britton, T. C.; Henry, S.
S.; Jagdmann, G. E.; Coleman, D. S.; Johnson, M. P.; Andis, S. L.; Schoepp,
D. D. Bioorg. Med. Chem. Lett. 2004, 14, 3099. (d) Evans, D.; Cracknell,
M. E.; Saunders, J. C.; Smith, C. E.; Williamson, W. R. N.; Dawson, W.;
Sweatman, W. J. F. J. Med. Chem. 1987, 30, 1321. 1-Alkyl-1-aryl alkenes:
(e) Bernstein, P. R.; Aharony, D.; Albert, J. S.; Andisik, D.; Barthlow, H.
G.; Bialecki, R.; Davenport, T.; Dedinas, R. F.; Dembofsky, B. T.; Koether,
G.; Kosmider, B. J.; Kirkland, K.; Ohnmacht, C. J.; Potts, W.; Rumsey,
W. L.; Shen, L.; Shenvi, A.; Sherwood, S.; Stollman, D.; Russel, K. Bioorg.
Med. Chem. Lett. 2001, 11, 2769. (f) Schmidt, J. M.; Mercure, J.; Tremblay,
G. B.; Page´, M.; Kalbakji, A.; Feher, M.; Dunn-Dufault, R.; Peter, M. G.;
Redden, P. R. J. Med. Chem. 2003, 46, 1408. 1,1′-Dialkyl alkener: (g)
Takahashi, Y.; Inaba, N.; Kuwahara, S.; Kuki, W. Biosci. Biotechnol.
Biochem. 2003, 67, 195. (h) Ryu, S. Y.; Oak, M.-H.; Yoon, S.-K.; Cho,
D.-I.; Yoo, G.-S.; Kim, T.-S.; Kim, K.-M. Planta Med. 2000, 66, 358. (i)
Fride, E.; Feigin, C.; Ponde, D. E.; Breuer, A.; Hanus, L.; Arshavsky, N.;
Mechoulam, R. Eur. J. Pharmacol. 2004, 506, 179.
(9) (a) Gelman, D.; Buchwald, S. L. Angew. Chem., Int. Ed. 2003, 42,
5993. (b) Lo Galbo, F.; Occhiato, E. G.; Guarna, A.; Faggi, C. J. Org.
Chem. 2003, 68, 6360. (c) Fu, X.; Zhang, S.; Yin, J.; Schumacher, D. P.
Tetrahedron Lett. 2002, 43, 6673.
(10) (a) Klapars, A.; Campos, K. R.; Chen, C.; Volante, R. P. Org. Lett.
2005, 7, 1185. (b) Huang, X.; Anderson, K. W.; Zim, D.; Jiang, L.; Klapars,
A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653.
(11) (a) Hansen, A. L.; Skrydstrup, T. Org. Lett. 2005, 7, 5585. (b) Fu,
X.; Zhang, S.; Yin, J.; McAllister, T. L.; Jiang, S. A.; Chou-Hong, T.;
Thiruvengadam, K.; Zhang, F. Tetrahedron Lett. 2002, 43, 573.
(12) Hansen, A. L.; Ebran, J.-P.; Ahlquist, M.; Norrby, P.-O.; Skrydstrup,
T. Angew. Chem., Int. Ed. 2006, 45, 3349.
(14) For some examples, see: (a) Burkinshaw, S. M.; Griffiths, J.; Towns,
A. D. J. Mater. Chem. 1998, 8, 2677. (b) Gollnick, K.; Schnatterer, A.;
Utschick, G. J. Org. Chem. 1993, 58, 6049. (c) Elmaleh, D. D.; Patai, S.;
Rappoport, Z. J. Chem. Soc. C 1971, 2637. (d) Bergmann, F.; Szmusz-
kowicz, J. J. Org. Chem. 1948, 70, 2748. (e) Belsham, G. M.; Muir, A. R.;
Kinns, M.; Phillips, L.; Twanmoh, L.-M. J. Chem. Soc., Perkin Trans. 2
1974, 119. (f) Weller, D. D.; Weller, D. L. Tetrahedron Lett. 1982, 23,
5239. (g) Brown, H. C.; Cleveland, J. D. J. Org. Chem. 1976, 41, 1792.
J. Org. Chem, Vol. 72, No. 17, 2007 6465