10.1002/chem.201703103
Chemistry - A European Journal
FULL PAPER
Preparation of endo–norbornene terminated monolayers (M3).
Amino–terminated monolayers (M1) were stirred with 50 mM aqueous
solution of 1,1'–carbonyldiimidazole (CDI) for 1 h to yield acyl imidazole–
activated surfaces. These surfaces were immediately reacted with 50 mM
endo–5–norbornene–2–methanol solution in DCE. This resulted in
covalent tethering of the endo–norbornene on the surface via carbamate
bond in 16 h. The samples were sonicated and washed with copious
amounts of CH2Cl2, dried and stored under nitrogen atmosphere.
[5]
[6]
[7]
a) S. P. Pujari, L. Scheres, A. T. M. Marcelis, H. Zuilhof, Angew. Chem.
Int. Ed. 2014, 53, 6322-6356; Angew. Chem. 2014, 126, 6438-6474; b)
H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40,
2004-2021; Angew. Chem. 2001, 113, 2056–2075; c) J. Escorihuela, A.
T. M. Marcelis, H. Zuilhof, Adv. Mater. Interfaces 2015, 2, 1500135.
a) K. Godula, D. Rabuka, K. T. Nam, C. R. Bertozzi, Angew. Chem. Int.
Ed. 2009, 48, 4973-4976; Angew. Chem. 2009, 121, 5073-5076; b) B.
Uszczynska, T. Ratajczak, E. Frydrych, H. Maciejewski, M. Figlerowicz,
W. T. Markiewicz, M. K. Chmielewski, Lab on a Chip 2012, 12, 1151-
1156.
Preparation of tetrazine terminated monolayers (M4). Amino–
terminated monolayers (M1) were stirred with 50 mM aqueous solution of
1,1'–carbonyldiimidazole (CDI) for 1 h to yield acyl imidazole–activated
surfaces. These surfaces were immediately reacted with 50 mM (4–(6–
methyl–1,2,4,5–tetrazin–3–yl)phenyl)methanamine, 1 solution in DCE.
This resulted in covalent tethering of the tetrazine on the surface via urea
bond in 16 h. The samples were sonicated and washed with copious
amounts of CH2Cl2, dried and stored under nitrogen atmosphere.
a) M. L. Blackman, M. Royzen, J. M. Fox, J. Am. Chem. Soc. 2008, 130,
13518-13519; b) N. K. Devaraj, R. Upadhyay, J. B. Haun, S. A.
Hilderbrand, R. Weissleder, Angew. Chem. Int. Ed. 2009, 48, 7013-7016;
Angew. Chem. 2009, 121, 7147-7150.
[8]
[9]
a) D. Wang, W. Chen, Y. Zheng, C. Dai, K. Wang, B. Ke, B. Wang, Org.
Biomol. Chem. 2014, 12, 3950-3955; b) M. R. Karver, R. Weissleder, S.
A. Hilderbrand, Bioconjugate Chem. 2011, 22, 2263-2270.
a) A.-C. Knall, M. Hollauf, C. Slugovc, Tet. Lett. 2014, 55, 4763-4766; b)
M. Vrabel, P. Kölle, K. M. Brunner, M. J. Gattner, V. López-Carrillo, R.
de Vivie-Riedle, T. Carell, Chem. Eur. J. 2013, 19, 13309-13312.
General method for IEDDA reaction on exo–/endo–norbornene
reaction on surface: Both free and buried exo–/endo–norbornene–
terminated surfaces were reacted with a 4–(6–methyl–1,2,4,5–tetrazin–3–
yl)benzyl 4–(trifluoromethyl)benzoate solution, 3 in DCE at 30 C. The
reaction was stirred at a constant speed using a magnetic bead and stirrer
and all samples were loaded in a specially constructed Teflon holder to
ensure rigorous reproducibility between samples. Samples were
immersed into the solution for a set period of reaction time and immediately
taken out and washed with copious amounts of DCM. The samples were
further sonicated in DCM to remove any physisorbed species for 15 min,
dried under a dry nitrogen stream and stored for further analysis in a
sealed vial.
[10] P. Wang, Z. Na, J. Fu, C. Y. J. Tan, H. Zhang, S. Q. Yao, H. Sun, Chem.
Commun. 2014, 50, 11818-11821.
[11] a) N. K. Devaraj, R. Weissleder, S. A. Hilderbrand, Bioconjugate Chem.
2008, 19, 2297-2299; b) J. Schoch, M. Wiessler, A. Jäschke, J. Am.
Chem. Soc. 2010, 132, 8846-8847; c) H. S. G. Beckmann, A.
Niederwieser, M. Wiessler, V. Wittmann, Chem. Eur. J. 2012, 18, 6548-
6554; d) O. Roling, A. Mardyukov, S. Lamping, B. Vonhoren, S. Rinnen,
H. F. Arlinghaus, A. Studer, B. J. Ravoo, Org. Biomol. Chem. 2014, 12,
7828-7835.
[12] R. Sen, D. Gahtory, R. R. Carvalho, B. Albada, F. L.van Delft, H. Zuilhof,
Angew . Chem. Int. Ed. 2017, 129, 4194-4198.
[13] a) N. S. Bhairamadgi, S. Gangarapu, M. A. Caipa Campos, J. M. J.
Paulusse, C. J. M. van Rijn, H. Zuilhof, Langmuir 2013, 29, 4535-4542;
b) J. Escorihuela, M. J. Banuls, R. Puchades, A. Maquieira, Chem.
Commun. 2012, 48, 2116-2118.
General method for IEDDA reaction on tetrazine terminated on
surface: Both “free” and “buried” tetrazine–terminated surfaces were
reacted with ((1R,2S,4R)–bicyclo[2.2.1]hept–5–en–2–yl)methyl 4–
(trifluoromethyl)benzoate [4, exo–norbornene tag molecule] or
[14] a) R. Sen, J. Escorihuela, M. M. J. Smulders, H. Zuilhof, Langmuir 2016,
32, 3412-3419; b) R. Sen, J. Escorihuela; F. L. van Delft, H. Zuilhof,
Angew. Chem. Int. Ed. 2017, 56, 3299-3303.
((1R,2R,4R)–bicyclo[2.2.1]hept–5–en–2–yl)methyl
4–(trifluoromethyl)
benzoate [6, endo–norbornene tag molecule] solution in DCE at 30 °C.
The reaction was stirred at a constant speed using a magnetic bead and
stirrer and all samples were loaded in a specially constructed Teflon holder
to ensure rigorous reproducibility between samples. Samples were
immersed into above said solution for a set period of reaction time and
immediately taken out and washed with copious amounts of DCM. The
samples were further sonicated in DCM to remove any physisorbed
species for 15 min, dried under a dry nitrogen stream and stored for further
analysis in a sealed vial.
[15] Y. Kwon, M. Mrksich, J. Am. Chem. Soc. 2002, 124, 806-812.
[16] B. Rijksen, S. P. Pujari, L. Scheres, C. J. M. van Rijn, J. E. Baio, T.
Weidner, H. Zuilhof, Langmuir 2012, 28, 6577-6588.
[17] X. Fan, Y. Ge, F. Lin, Y. Yang, G. Zhang, W. S. Ngai, Z. Lin, S. Zheng,
J. Wang, J. Zhao, J. Li, P. R. Chen, Angew. Chem. Int. Ed. 2016, 55,
14046-14050.
[18] L. Törk, G. Jiménez-Osés, C. Doubleday, F. Liu, K. N. Houk, J. Am.
Chem. Soc. 2015, 137, 4749-4758.
[19] J. Yang, Y. Liang, J. Seckute, K. N. Houk, N. K. Devaraj, Chemistry 2014,
20, 3365-3375.
[20] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P.
Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr.,
J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N.
Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.
P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.
J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.
Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A.
D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J.
Fox, Gaussian, Inc., Wallingford, CT, USA, 2009.
Acknowledgements
The authors thank the Netherlands Organization for Scientific
Research for funding (ECHO project number 712.012.006); Prof.
Floris van Delft and Medea Kosian for stimulating discussions.
Keywords: cycloaddition, inverse electron demand Diels–Alder
reaction, mass spectrometry, surface chemistry, reaction rate.
References
[1]
[2]
W. Tang, M. L. Becker, Chem. Soc. Rev. 2014, 43, 7013-7039.
F. Ehret, H. Wu, S. C. Alexander, N. K. Devaraj, J. Am. Chem. Soc. 2015,
137, 8876-8879.
[21] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
[22] a) F. Liu, R. S. Paton, S. Kim, Y. Liang, K. N. Houk, J. Am. Chem. Soc.
2013, 135, 15642-15649; b) L. Törk, G. Jiménez-Osés, C. Doubleday, F.
Liu, K. N. Houk, J. Am. Chem. Soc. 2015, 137, 4749-4758.
[3]
[4]
C. D. Spicer, B. G. Davis, Nat. Commun. 2014, 5, 4740-4754.
E. M. Sletten, C. R. Bertozzi, Angew. Chem. Int. Ed. 2009, 48, 6974-
6998; Angew. Chem. 2009, 121, 7108-7133.
This article is protected by copyright. All rights reserved.