Organic Letters
Letter
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Dr. Scott Virgil and the Caltech Center for Catalysis
and Chemical Synthesis for access to analytical equipment. We
also thank Nicholas J. Fastuca for assistance in substrate
preparation and Dr. Matthew J. Hesse for helpful discussions
(both of Caltech). Fellowship support was provided by the
National Science Foundation (graduate research fellowship to
D.C.G., Grant No. DGE-1144469). S.E.R. is an American
Cancer Society Research Scholar and Heritage Medical
Research Institute Investigator. Financial support from the
NSF (CAREER-1057143) is gratefully acknowledged.
REFERENCES
■
(1) (a) Dudnik, A. S.; Fu, G. C. J. Am. Chem. Soc. 2012, 134,
̈
10693−10697. (b) Samann, C.; Dhayalan, V.; Schreiner, P. R.;
Knochel, P. Org. Lett. 2014, 16, 2418−2421. (c) Atack, T. C.; Cook,
S. P. J. Am. Chem. Soc. 2016, 138, 6139−6142.
(2) (a) Gribble, G. W. Acc. Chem. Res. 1998, 31, 141−152.
́
(b) Gribble, G. W. Environ. Chem. 2015, 12, 396−405. (c) Gal, B.;
Figure 3. Radical deoxybromination and deoxyfluorination. Reactions
were conducted on 0.3 mmol scale with 1.5 equiv of halide source in
CH2Cl2. Reactions for products 11a−c and 12a−c were run for 4 h;
reactions for products 11d and 12d were run for 24 h. Isolated yields
are reported. Reaction for 12d was performed in CD2Cl2, and the
yield was determined by 1H NMR analysis of the crude reaction
mixture using pyrazine as an internal standard.
Bucher, C.; Burns, N. Z. Mar. Drugs 2016, 14, 206.
(3) (a) Darzens, G. Acad. Sci., Paris, C. R. 1911, 152, 1314−1317.
(b) Lewis, E. S.; Boozer, C. E. J. Am. Chem. Soc. 1952, 74, 308−311.
(c) Davis, M.; Skuta, H.; Krubsack, A. J. Mech. React. Sulfur Compd.
1970, 5, 1−57.
(4) Appel, R. Angew. Chem., Int. Ed. Engl. 1975, 14, 801−811.
(5) Chung, W.; Vanderwal, C. D. Angew. Chem., Int. Ed. 2016, 55,
4396−4434.
(6) Additional deoxychlorination reactions: (a) Kozikowski, A. P.;
Lee, J. Tetrahedron Lett. 1988, 29, 3053−3056. (b) Bendall, J. G.;
Payne, A. N.; Screen, T. E. O.; Holmes, A. B. Chem. Commun. 1997,
1067−1068. (c) Li, Z.; Crosignani, S.; Linclau, B. Tetrahedron Lett.
2003, 44, 8143−8147. (d) Ortega, N.; Feher-Voelger, A.; Brovetto,
developed. The reactions proceed at room temperature with
visible light, and ethyl trichloroacetate was identified as an
effective and readily available chlorine atom source. A
comparison study of the radical deoxychlorination reaction
with thionyl chloride and Appel reaction conditions demon-
strated a diminished propensity for rearrangements and
elimination processes compared to the nucleophilic substitu-
tion-based chemistry. The conditions were successfully
translated to the synthesis of alkyl bromides and fluorides by
using diethyl bromomalonate or Selectfluor, respectively.
Efforts in our laboratory directed toward continued develop-
ment and implementation of this transformation in natural
product synthesis are ongoing.
́
M.; Padron, J. I.; Martín, V. S.; Martín, T. Adv. Synth. Catal. 2011,
353, 963−972. (e) Azad, C. S.; Saxena, A. K. Tetrahedron 2013, 69,
2608−2612.
(7) Reyes, J. R.; Rawal, V. H. Angew. Chem., Int. Ed. 2016, 55, 3077−
3080.
̈
(8) (a) Quinn, R. K.; Konst, Z. A.; Michalak, S. E.; Schmidt, Y.;
Szklarski, A. R.; Flores, A. R.; Nam, S.; Horne, D. A.; Vanderwal, C.
D.; Alexanian, E. J. J. Am. Chem. Soc. 2016, 138, 696−702. (b) Qin,
Q.; Yu, S. Org. Lett. 2015, 17, 1894−1897. (c) Xiong, H.-Y.; Cahard,
D.; Pannecoucke, X.; Besset, T. Eur. J. Org. Chem. 2016, 2016, 3625−
3630. (d) Ozawa, J.; Kanai, M. Org. Lett. 2017, 19, 1430−1433.
(e) Combe, S. H.; Hosseini, A.; Parra, A.; Schreiner, P. R. J. Org.
Chem. 2017, 82, 2407−2413. (f) Han, L.; Xia, J.-B.; You, L.; Chen, C.
Tetrahedron 2017, 73, 3696−3701. (g) Zhao, M.; Lu, W. Org. Lett.
2017, 19, 4560−4563. (h) Short, M. A.; Blackburn, J. M.; Roizen, J. L.
Angew. Chem., Int. Ed. 2018, 57, 296−299. (i) Li, G.; Dilger, A. K.;
Cheng, P. T.; Ewing, W. R.; Groves, J. T. Angew. Chem., Int. Ed. 2018,
57, 1251−1255.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(9) (a) Gaspar, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2008, 47,
5758−5760. (b) Wilger, D. J.; Grandjean, J.-M. M.; Lammert, T. R.;
Nicewicz, D. A. Nat. Chem. 2014, 6, 720−726. (c) For a review on
the subject, see: Crossley, S. W. M.; Obradors, C.; Martinez, R. M.;
Shenvi, R. A. Chem. Rev. 2016, 116, 8912−9000.
(10) (a) King, S. M.; Calandra, N. A.; Herzon, S. B. Angew. Chem.,
Int. Ed. 2013, 52, 3642−3645. (b) King, S. M.; Ma, X.; Herzon, S. B.
J. Am. Chem. Soc. 2014, 136, 6884−6887.
(11) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91,
1237−1286.
(12) Methods for radical decarboxyhalogenation: (a) Johnson, R. G.;
Ingham, R. K. Chem. Rev. 1956, 56, 219−269. (b) Kochi, J. K. J. Am.
Chem. Soc. 1965, 87, 2500−2502. (c) Barton, D. H. R.; Crich, D.;
Motherwell, W. B. Tetrahedron Lett. 1983, 24, 4979−4982. (d) Starr,
Detailed experimental procedures, compound character-
1
ization data, H and 13C NMR spectra (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Author Contributions
‡J.Y.S. and D.C.G. contributed equally.
D
Org. Lett. XXXX, XXX, XXX−XXX