(45%), mp 81 ЊC; νmax(KBr)/cmϪ1 3400 (OH), 3000 (arom.
fractometer with Mo-Kα radiation. Data reduction and appli-
cation of Lorentz and polarisation corrections were carried out
using the Enraf-Nonius Structure Determination Package.
1
᎐
C᎐H), 2962 (aliph. C᎐H) and 2150 (C᎐C); H NMR (400 MHz;
᎐
CDCl3) δH 1.76 (br s, 1H), 4.42 (s, 2H), 6.98 (dd, 1H), 7.31 (d,
1H) and 7.33 (d, 2H); 13C NMR (100 MHz; CDCl3) δC 66.25,
70.34, 71.70, 80.12, 82.58, 121.64, 127.10, 128.80 and 134.75
(Found: C, 66.3; H, 3.7; S, 19.6. Calc. for C9H6OS: C, 66.64; H,
3.73; S, 19.77%).
Acknowledgements
We gratefully acknowledge the research fellowship awarded
to A. S. by the Council for Scientific and Industrial Research,
New Delhi.
Preparation of 1-(3Ј-quinolyl)-4-(2Ј-thienyl)buta-1,3-diyne 7a
To a suspension of CuCl (12 mg), ethylamine (1 ml) and
hydroxylamine hydrochloride (100 mg) in ethanol (5 ml) was
added dropwise a solution of 2-thienylacetylene 3a (250 mg,
0.023 mol) in N,N-dimethylacetamide (DMA) (11 ml). After-
wards, (bromoethynyl)quinoline 5d (300 mg, 0.013 mol) as a
solution in 71 ml of DMA was added at 30 ЊC. The reaction was
carried out under nitrogen. After being stirred for 1.5 h the
mixture was poured into 50 ml of ice-cold water; the precipitate
was filtered off, and recrystallised from methanol. The pure
diyne 7a was obtained as needles (60%), mp 126 ЊC; νmax(KBr)/
References
1 S. Okada, H. Matsuda and H. Nakanishi, in Polymeric Materials
Encyclopedia, ed. J. C. Salomone, CRC Press, Boca Raton, 1996,
p. 8393; Polydiacetylene, ed. D. Bloor and R. R. Chance, NATO ASI
Series, Series E, Applied Sciences No. 102, Martinus Nijhoff,
Dordrecht, 1985.
2 G. M. J. Schmidt, in Reactivity of Photoexcited Organic Molecules,
Wiley, New York, 1967, p. 227; R. H. Baughman, J. Polym. Sci.,
Polym. Phys. Ed., 1974, 12, 1511.
3 S. Molyneux, H. Matsuda, A. K. Kar, B. J. Wherett, S. Okada
and H. Nakanishi, Nonlinear Optics, 1993, 4, 299; G. Stegeman,
B. Lawrence, M. Cha, W. Torruellas, S. Etemad, G. Baker and
J. Meth, Technical Digest of the 4th Iketani Conference, Iketani
Foundation, Tokyo, 1994, p. 55; T. Hattori and T. Kobayashi, Chem.
Phys. Lett., 1987, 133, 230.
4 K. C. Lim, C. R. Fincher, S. A. Casalnuovo and A. J. Heeger, Mol.
Cryst. Liq. Cryst., 1984, 105, 329.
5 R. H. Baughman and R. R. Chance, J. Chem. Phys., 1980, 73, 4113.
6 D. Bloor, in Developments in Crystalline Polymers I, Applied
Science, Barking, 1982, p. 151; Comprehensive Polymer Science,
Pergamon, Oxford, 1989, vol. 5, p. 233.
cmϪ1 3100 (arom. C᎐H), 2133 (C᎐C), 1640, 1600 and 1580
᎐
᎐
1
(arom. C᎐C); H NMR (400 MHz; CDCl3) δH 7.02 (dd, 1H),
7.36 (d, 1H), 7.39 (d, 1H), 7.60 (dd, 1H), 7.75 (dd, 1H), 7.80
(d, 1H), 8.10 (d, 1H), 8.30 (s, 1H) and 8.95 (s, 1H); 13C NMR
(100 MHz; CDCl3) δC 75.90, 77.03, 77.62, 80.80, 116.59, 121.10,
125.44, 127.01, 127.45, 127.66, 129.04, 129.99, 130.81, 132.71,
140.54, 146.51 and 153.12 (Found: C, 82.2; H, 2.8; N, 4.4; S, 9.9.
Calc. for C22H9NS: C, 82.73; H, 2.84; N, 4.39; S, 10.04%).
Preparation of 1-(3Ј-quinolyl)-4-(3Ј-thienyl)buta-1,3-diyne 7b
7 V. Enkelmann, Chem. Mater., 1994, 6, 1337.
8 M. S. Paley, D. O. Frazier, H. Abeledeyem, S. P. McManus and
S. E. Zutaut, J. Am. Chem. Soc., 1992, 114, 3247.
9 S. S. Talwar, M. Kamath, K. Das and U. C. Sinha, Polym. Commun.,
1990, 31, 198.
10 A. Sarkar, N. B. Kodali, M. B. Kamath, L. P. Bhagwat and S. S.
Talwar, J. Macromol. Sci., Part A: Pure Appl. Chem., in the press.
11 G. Wegner, Polym. Lett., 1971, 9, 133.
12 R. H. Baughman and K. C. Yee, J. Polym. Sci., Polym. Chem. Ed.,
1974, 12, 2467.
The preparation of compound 7b was achieved using a similar
method to that for isomer 7a. The starting materials used were
3-thienylacetylene 3b and (bromoethynyl)quinoline 5d. Pure
compound 7b was obtained as needles (48%), mp 133 ЊC;
νmax(KBr)/cmϪ1 3100 (arom. C᎐H), 2133 (C᎐C), 1640, 1600 and
᎐
᎐
1
1580 (arom. C᎐C); H NMR (400 MHz; CDCl3) δH 7.21 (d,
1H), 7.30 (d, 1H), 7.61 (dd, 1H), 7.66 (dd, 1H), 7.75 (dd, 1H),
7.80 (dd, 1H), 8.10 (d, 1H), 8.30 (s, 1H) and 8.90 (s, 1H); 13C
NMR (100 MHz; CDCl3) δC 73.91, 77.16, 78.08, 78.62, 116.18,
120.54, 125.82, 127.01, 127.45, 127.66, 129.04, 129.99, 130.81,
134.02, 140.44, 146.51 and 153.01 (Found: C, 82.7; H, 2.8; N,
4.2; S, 9.9. Calc. for C22H9NS: C, 82.73; H, 2.84; N, 4.39; S,
10.04%).
13 Y. Tokura, T. Koda, A. Itsubo, M. Miyabayashi, K. Okuhara and
A. Ueda, J. Chem. Phys., 1986, 85, 99.
14 M. Sukwattanasinitt, X. Wang, L. Li, X. Jiang, J. Kumar, S. K.
Tripathi and D. J. Sandman, Chem. Mater., 1998, 10, 27.
15 A. Sarkar, PhD Thesis, IIT Bombay, India, 1993.
16 T. Manisekaran, A. Sarkar, S. S. Talwar and J. S. Prasad, Mol.
Cryst. Liq. Cryst. Sci. Technol. Sect. A, 1995, 268, 101.
17 K. Das, U. C. Sinha, S. S. Talwar, M. B. Kamath and R. Bohra, Acta
Crystallogr., Sect. C, 1990, 46, 2126.
Solid-state polymerisation
18 T. Manisekaran, A. Sarkar; S. S. Talwar and J. S. Prasad, Mol.
Cryst. Liq. Cryst. Sci. Technol. Sect. A, 1997, 308, 77.
19 M. J. Barrow, G. H. W. Milburn, Z. Zeng, A. Sarkar and S. S.
Talwar, Acta Crystallogr., Sect. C, 1994, 50, 650.
20 A. Sarkar and S. S. Talwar, unpublished results.
21 G. N. Patel, E. N. Duesler, D. Y. Curtin and I. C. Paul, J. Am. Chem.
Soc., 1980, 102, 461.
22 J. J. Mayerle and M. A. Flandera, Acta Crystallogr., Sect. B, 1978,
34, 1374.
23 J. J. Mayerle, T. C. Clarke and K. Bredfeldt, Acta Crystallogr., Sect.
B, 1979, 35, 1519.
24 H. Nakansihi, H. Matsuda, S. Okada and M. Kato, in Frontiers
of Macromolecular Science, ed. T. Saegusa, H. Higashimura and
A. Abe, Blackwell, Oxford, 1989, p. 469.
25 S. Shimada, A. Masaki, K. Hayamizu, H. Matsuda, S. Okada and
H. Nakanishi, Chem. Commun., 1997, 1421.
Polymerisation behaviour of the DA monomers was examined
using UV and γ-rays as well as anealing. Freshly prepared
monomer crystals were used for exposure to the above stimuli.
Only compound 4d turned blue by all three modes of stimuli,
indicating that it is solid-state reactive. The rest of the mono-
mers turned from colourless to brown, suggesting that 1,4-
addition is not occurring for these DAs. γ-Radiation was used
to polymerise compound 4d in bulk. The percentage conversion
of the reactive monomer to polymer was obtained by extracting
out the unchanged monomer after solid-state polymerisation.
The weight of the monomer before polymerisation and the
weight of the extracted polymer were used to calculate the
percentage polymer conversion.
26 A. V. V. Nampoothiri, P. N. Puntambeker, B. P. Singh, R. Sachdeva,
A. Sarkar, D. Saha, A. N. Suresh and S. S. Talwar, J. Chem. Phys.,
1998, 109, 685.
27 B. Iddon and R. M. Scrowstod, Adv. Heterocycl. Chem., 1970, 11,
197.
Single crystal X-ray data
Single crystals of 4a, 4c, 4d, 6a and 7a, that were suitable for X-
ray crystallographic analyses, were obtained by slow evapor-
ation from suitable organic solvents. The structure solution and
refinement details for the compounds have been published
elsewhere,16–19 and so will only be briefly discussed here. Lattice
parameters at 25 ЊC or 27 ЊC were determined by least-squares
fit to the setting parameters of 25 independent reflections. Data
were measured on an Enraf-Nonius CAD4F four-circle dif-
28 T. B. Patrick and J. C. Honeggar, J. Org. Chem., 1974, 39, 3791.
29 J. P. Beny, S. N. Dhawan, J. Kagan and S. Sundlass, J. Org. Chem.,
1982, 47, 2201.
30 D. E. Ames, D. Bull and C. Takundwa, Synthesis, 1981, 364.
Paper 8/06078I
4146
J. Chem. Soc., Perkin Trans. 1, 1998, 4141–4146