80
M. Brouk et al. / Journal of Molecular Catalysis B: Enzymatic 66 (2010) 72–80
stituted with a polar and bulky residue (PEA), (2) sulfoxidation on
the side chain of methyl-p-tolyl sulfide and (3) epoxidation on the
double bond side chain of styrene (Fig. 2). Due to the distant location
of D285 from the active site itself, it was hypothesized and demon-
strated that alterationsat this positionaffecttheactivity, but not the
regio- or enantio-selectivity. In contrast, mutating a residue that is
part of the hydrophobic gate in the active site entrance, i.e. position
T4MO I100 and TOM V106, affected both activity and selectivity.
Mutating the entrance of the active site may have two implica-
tions. First, enlarging the hydrophobic gate allows easier access
to/from the active site, which results in higher oxidation rates.
Second, expanding the hydrophobic cavity surrounding the diiron
binding site enables better or different alignment of the substrate
in the active site thus influencing the regio- or enantio-selectivity.
Combining the effects by mutating both “gates”, to the active site
along with the tunnel entrance, results in obtaining an additive or
even synergistic outcome on the enzyme activity.
References
[1] A. Schmid, J.S. Dordick, B. Hauer, A. Kiener, M. Wubbolts, B. Witholt, Nature 409
(2001) 258–268.
[2] T.W. Johannes, H. Zhao, Curr. Opin. Microbiol. 9 (2006) 261–267.
[3] M. Leisola, O. Turunen, Appl. Microbiol. Biotechnol. 75 (2007) 1225–1232.
[4] N.M. Antikainen, S.F. Martin, Bioorg. Med. Chem. 13 (2005) 2701–2716.
[5] K.L. Morley, R.J. Kazlauskas, Trends Biotechnol. 23 (2005) 231–237.
[6] A. Fishman, Y. Tao, G. Vardar, L. Rui, T.K. Wood, in: J.-L. Ramos, R.C. Levesque
(Eds.), Pseudomonas, Springer, US, 2006, pp. 237–286.
[7] J. Sylvestre, H. Chautard, F. Cedrone, M. Delcourt, Org. Process Res. Dev. 10
(2006) 562–571.
[8] S.B. Rubin-Pitel, H. Zhao, Comb.Chem. High Throughput Screen. 9 (2006)
247–257.
[9] G. Vardar, T.K. Wood, J. Bacteriol. 187 (2005) 1511–1514.
[10] G. Vardar, K. Ryu, T.K. Wood, J. Biotechnol. 115 (2005) 145–156.
[11] J. Schmitt, S. Brocca, R.D. Schmid, J. Pleiss, Protein Eng. 15 (2002) 595–601.
[12] I. Capila, Y. Wu, D.W. Rethwisch, A. Matte, M. Cygler, R.J. Linhardt, Biochim.
Biophys. Acta 1597 (2002) 260–270.
[13] R. Chaloupkova, J. Sykorova, Z. Prokop, A. Jesenska, M. Monincova, M.
Pavlova, M. Tsuda, Y. Nagata, J. Damborsky, J. Biol. Chem. 278 (2003) 52622–
52628.
With the intention of rationally designing an enzyme, it is
important to consider, not only the enzyme structure and func-
tion, but also the substrate characteristics. WT T4MO oxidized
the natural substrate, toluene, having a small and hydrophobic
side chain, 1–2 orders of magnitude faster than other structurally
related substrates, as PEA, methyl-p-tolyl sulfide and styrene.
Besides toluene, the fastest oxidation rate was obtained for 1 mM
styrene (0.21 nmol/min/mg protein), which has a relatively small
and rigid allylic side chain, while the oxidation rate of 1 mM PEA,
with the polar and bulky side chain, was the slowest with a rate
of 0.06 nmol/min/mg protein. For the improvement of activity
towards PEA, the removal of the negative electrostatic charge in
the tunnel entrance was more important, whereas for styrene, a
higher impact was achieved by enlarging the width of the tunnel
entrance. In addition to the size of the amino acid side chain, it
is important to consider its rotamer configuration. Generally, the
improvement obtained by mutating the tunnel entrance was lower
for styrene oxidation compared with PEA and methyl-p-tolyl sul-
fide (Table 3). Similarly, altering the active site entrance affected
mostly the enzyme activity toward PEA, with improvement of up
to 35-fold by T4MO I100A, compared with improvement of up to
11-fold for methyl-p-tolyl sulfide oxidation (by T4MO I100G) and
no activation for styrene (by T4MO I100L). Interestingly, while dif-
ferent substitutions, as D285I and D285Q, were beneficial for the
oxidation of both PEA and methyl-p-tolyl sulfide, they affected neg-
atively the enzyme activity towards styrene. Likewise, substitution
D285S, which improved the styrene oxidation rate, had a negative
effect on the enzyme activity towards PEA. The results demon-
strate that altering a key residue can be beneficial for improving
the enzyme’s activity towards diverse substrates, but the extent of
the improvement is different for each one.
[14] M. Pavlova, M. Klvana, Z. Prokop, R. Chaloupkova, P. Banas, M. Otyepka, R.C.
Wade, M. Tsuda, Y. Nagata, J. Damborsky, Nat. Chem. Biol. 5 (2009) 727–
733.
[15] K.A. Canada, S. Iwashita, H. Shim, T.K. Wood, J. Bacteriol. 184 (2002) 344–
349.
[16] G. Vardar, T.K. Wood, Appl. Environ. Microbiol. 70 (2004) 3253–3262.
[17] Y. Tao, A. Fishman, W.E. Bentley, T.K. Wood, J. Bacteriol. 186 (2004) 4705–
4713.
[18] A. Fishman, Y. Tao, W.E. Bentley, T.K. Wood, Biotechnol. Bioeng. 87 (2004) 779–
790.
[19] L.J. Bailey, J.G. McCoy, G.N. Phillips, B.G. Fox, Proc. Natl. Acad. Sci. U.S.A. 105
(2008) 19194–19198.
[20] J.G. Leahy, P.J. Batchelor, S.M. Morcomb, FEMS Microbiol. Rev. 27 (2003)
449–479.
[21] K.H. Mitchell, J.M. Studts, B.G. Fox, Biochemistry 41 (2002) 3176–3188.
[22] J. Sambbrook, D.W. Russell, Molecular Cloning: A Laboratory Manual, third ed.,
Cold Spring Harbor Laboratory Press, New York, 2001.
[23] Y. Tao, A. Fishman, W.E. Bentley, T.K. Wood, Appl. Environ. Microbiol. 70 (2004)
3814–3820.
[24] G. Vardar, T.K. Wood, Appl. Microbiol. Biotechnol. 68 (2005) 510–517.
[25] M. Brouk, A. Fishman, Food Chem. 116 (2009) 114–121.
[26] R. Feingersch, J. Shainsky, T.K. Wood, A. Fishman, Appl. Environ. Microbiol. 74
(2008) 1555–1566.
[27] R.W. Eaton, P.J. Chapman, J. Bacteriol. 177 (1995) 6983–6988.
[28] L. Rui, K.F. Reardon, T.K. Wood, Appl. Microbiol. Biotechnol. 66 (2005) 422–
429.
[29] A. Fishman, Y. Tao, L. Rui, T.K. Wood, J. Biol. Chem. 280 (2005) 506–514.
[30] J. Dolfing, A.J. van den Wijngaard, D.B. Janssen, Biodegradation
261–282.
4 (1993)
[31] L. Rui, Y.M. Kwon, A. Fishman, K.F. Reardon, T.K. Wood, Appl. Environ. Microbiol.
70 (2004) 3246–3252.
[32] K. Tee, O. Dmytrenko, K. Otto, A. Schmid, U. Schwaneberg, J. Mol. Catal. B:
Enzyme 50 (2008) 121–127.
[33] K. Tee, U. Schwaneberg, Comb. Chem. High Throughput Screen. 10 (2007)
197–217.
[34] M.H. Sazinsky, J. Bard, A. Di Donato, S.J. Lippard, J. Biol. Chem. 279 (2004)
30600–30610.
[35] R. Patel, Coord. Chem. Rev. 252 (2008) 659–701.
[36] R. Bentley, Chem. Soc. Rev. 34 (2005) 609–624.
[37] A. Archelas, R. Furstoss, Annu. Rev. Microbiol. 51 (1997) 491–525.
[38] K. McClay, B. Fox, R. Steffan, Appl. Environ. Microbiol. 66 (2000) 1877–1882.
[39] S. Panke, M. Held, M.G. Wubbolts, B. Witholt, A. Schmid, Biotechnol. Bioeng. 80
(2002) 33–41.
[40] E. Farinas, M. Alcalde, F. Arnold, Tetrahedron 60 (2004) 525–528.
[41] T. Nishio, A. Patel, Y. Wang, P.C. Lau, Appl. Microbiol. Biotechnol. 55 (2001)
321–325.
In summary, the amino acid replacement at “hot spots” is sub-
strate dependant. In addition, the location of the key residue in
the protein architecture will determine the nature of the change
in activity. Mutations at the tunnel entrance will most likely affect
the activity rate whereas altering residues near the active site can
affect both rate and selectivity.
[42] M.T. Reetz, D. Kahakeaw, R. Lohmer, Chembiochem 9 (2008) 1797–1804.
Acknowledgment
We thank Prof. Noam Adir for help with analysis of the T4MO
crystal structure.