RESOLUTION OF SECONDARY ALCOHOLS
1019
16. Adlercreutz, P., Asymmetric Reduction of Ketones with En-
zymes from Acetic Acid Bacteria, Biotechnol. Lett. 13:229–234
(1991).
TABLE 5
Enantioselective Enzymatic Hydrolysis of 2-Pentyl Acetate by
Lipase B from Candida antarcticaa
17. Trincone, A., L. Lama, V. Lanzotti, B. Nicolaus, M. DeRosa, M.
Rossi, and A. Gambacorta, Asymmetric Reduction of Ketones with
Resting Cells of Sulfolobus solfataricus, Biotech. Bioeng. 35:
559–564 (1990).
Reaction
time
(mm)
2-Pentyl
acetate
(g/L)
e.e. of S-2-
pentanol acetate
(%)
2-Pentanol
(g)
18. Patel, R.N., C.T. Hou, A.I. Laskin, and P. Derelanko, Microbial
Production of Methylketones: Properties of a Purified Secondary
Alcohol Dehydrogenase from Pichia sp., J. Appl. Biochem. 3:
218–232 (1981).
19. Salzar, L., J.L. Bermudez, C. Ramirez, E.F. Llama, and J.V. Sinis-
terra, Resolution of 3-α-Naphthoxy-1,2-propanediol Using Can-
dida antarctica Lipase, Tetrahedron: Asymmetry 10:3507–3514
(1999).
20. Bidjou, C., and L. Aribi-Zouioueche, Kinetic Resolution of Sec-
ondary Benzyl Derivatives by Transesterification and Enzymic
Hydrolysis, J. Soc. Alger. Chim. 9:261–268 (1999).
21. Kita, Y., Y. Takebe, K. Murata, T. Naka, and S. Akai, Conve-
nient Enzymatic Resolution of Alcohols Using Highly Reactive,
Nonharmful Acyl Donors, 1-Ethoxyvinyl Esters, J. Org. Chem.
65:83–88 (2000).
22. Ema, T., M. Jittani, T. Sakai, and M. Utaka, Lipase-Catalyzed
Kinetic Resolution of Large Secondary Alcohols Having Tetra-
phenylporphyrin, Tetrahedron Lett. 39:6311–6314 (1998).
23. Faraldos, J., E. Arroyo, and B. Herradon, Biocatalysis in Organic
Synthesis. Part 9. Highly Enantioselective Kinetic Resolution of
Secondary Alcohols Catalyzed by Acylase, Synletters 4:
367–370 (1997).
9
15
30
90
150
100.
78.
67.
48.
45.2
0.
15.6
23.
37.
39.
0.
28.
46
83.
98.6
aReaction mixture in 1 L of 50 mM phosphate buffer (pH 7.0) contained 100
g of racemic 2-pentyl acetate and 0.6 g of lipase B. The pH was maintained
at 7.0 with 5 N NaOH during reaction.The reaction was carried out at 32°C,
150 rpm. For abbreviation see Table 1.
REFERENCES
1. Jones, J.B., Enzymes in Organic Synthesis, Tetrahedron 42:
3351–3403 (1986).
2. Crout, D.H.G., S. Davies, R.J. Heath, C.O. Miles, D.R. Rath-
bone, and B.E.P. Swoboda, Application of Hydrolytic and De-
carboxylating Enzymes in Biotransformations, Biocatalysis 9:
1–30 (1994).
3. Davies, H.G., R.H. Green, D.R. Kelly, and S.M. Roberts, Re-
cent Advances in the Generation of Chiral Intermediates Using
Enzymes, Biotechnology 10:129–152 (1990).
4. Csuk, R., and B.I. Glanzer, Baker’s Yeast Mediated Transfor-
mations in Organic Synthesis, Chem. Rev. 96:556–566 (1991).
5. Kamphuis, J., W.H.J. Boesten, Q.B. Broxterman, H.F.M. Hermes,
J.A.M. van Balken, E.M. Meijer, and H.E. Schoemaker, The Pro-
duction and Uses of Optically Pure Natural and Unnatural Amino
Acids, Adv. Biochem. Eng. Biotech. 42:133–186 (1990).
6. Sih, C.J., Q-M. Gu, X. Holdgrun, and K. Harris, Optically-Active
Compounds via Biocatalytic Methods, Chirality 4:91–97 (1992).
7. Santaneillo, E., P. Ferraboschi, P. Grisenti, and A. Manzocchi, The
Biocatalytic Approach to the Preparation of Enantiomerically Pure
Chiral Building Blocks, Chem. Rev. 92:1071–1140 (1992).
8. Margolin, A.L., Enzymes in the Synthesis of Chiral Drugs, En-
zyme Microb. Technol. 15:266–280 (1993).
9. Wong, C-H., and G.M. Whitesides, Enzymes in Synthetic Or-
ganic Chemistry, Tetrahedron Organic Chemistry Series, Perga-
mon, New York, 1994, Vol. 12.
10. Patel, R., Stereoselective Biotransformations in Synthesis of Some
Pharmaceutical Intermediates, Adv. Appl. Microbiol. 43:91–140
(1997).
11. Sauerberg, P., P.H. Olesen, Heterocyclic Compounds and Their
Preparation and Use, U.S. Patent 5,418,240 (1995).
12. Hamilton, G.S., J-H., Li, and J.P. Steiner, Method of Using Neu-
trotrophic Sulfonamide Compounds, U.S. Patent 5,721,256 (1998).
13. Caballa, D., I. Francois, and S. Hodgson, Highlights from Society
For Medicine’s Research Meeting, Sept. 18, 1997, London, DN &
P 10 (8):October 1997.
14. Adlercreutz, P., Novel Biocatalysts for the Asymmetric Reduction
of Ketones: Permeabilized Cells of Gluconobacter oxydans, En-
zyme Microb. Technol. 13:9–14 (1991).
24. Legros, J.-Y., M. Toffano, S.K. Drayton, M. Rivard, and J.-C.
Fiaud, Kinetic Resolution of Secondary Alcohols Mediated by
Rabbit Gastric Lipase, Tetrahedron Lett. 38:1915–1918 (1997).
25. Suginaka, K., Y. Yahashi, and Y. Yamamoto, Highly Selective
Resolution of Secondary Alcohols and Acetoacetates with Li-
pases and Diketene in Organic Media, Tetrahedron: Asymmetry
7:1153–1158 (1996).
26. Orrenius, C., N. Oehrner, D. Rotticci, A. Mattson, K. Hult, and T.
Norin, Candida antarctica Lipase B Catalyzed Kinetic Resolu-
tions: Substrate Structure Requirements for the Preparation of
Enantiomerically Enriched Secondary Alcohols, Ibid. 6:1217–
1220 (1995).
27. Janssen, A.J.M., A.J.H. Klunder, and B. Zwanenburg, Resolu-
tion of Secondary Alcohols by Enzyme-Catalyzed Transesterifi-
cation in Alkyl Carboxylates as the Solvent, Tetrahedron
47:7645–7662 (1991).
28. Bevinakatti, H.S., A.A. Banerji, and R.V. Newadker, Resolution
of Secondary Alcohols Using Lipase in Disopropyl Ether, J.
Org. Chem. 54:2453–2455 (1989).
29. Hsu, S.-H., S.-S. Wu, Y.-F. Wang, and C.-H. Wong, Lipase-Cat-
alyzed Irreversible Transesterification Using Enol Esters:
XAD-8 Immobilized Lipoprotein Lipase-Catalyzed Resolution
of Secondary Alcohols, Tetrahedron Lett. 31:6403–6406
(1990).
30. Persson, B.A., A.L.E. Larsson, M.L. Ray, and J.-E. Backvall,
Ruthenium- and Enzyme-Catalyzed Dynamic Resolution of
Secondary Alcohols, J. Am. Chem. Soc. 121:1645–1650 (1999).
15. Zelinski, T., and M-R. Kula, A Kinetic Study and Application
of a Novel Carbonyl Reductase Isolated from Rhodococcus ery-
thropolis, Bioorg. Med. Chem. 2:421–428 (1994).
[Received June 6, 2000; accepted July 28, 2000]
JAOCS, Vol. 77, no. 10 (2000)