character, while A–O (A = Li, Na, Rb) bonds exhibit obvious
ionicity. Also it is obvious the covalent strength of A–O bonds
follows the order of Li–O > Na–O > Rb–O as expected. For all
three compounds, the shorter In–O bonds generally have the larger
bond orders than those of longer bonds (see Table S3†).
3 K. M. Ok and P. S. Halasyamani, Angew. Chem., Int. Ed., 2004, 43,
5489; K. M. Ok and P. S. Halasyamani, Inorg. Chem., 2005, 44, 9353;
D. Phanon, A. Mosset and I. Autier-Luneau, Angew. Chem., Int. Ed.,
2007, 46, 8488.
4 D. Phanon and I. Gautier-Luneau, J. Mater. Chem., 2007, 17, 1123.
5 R. E. Sykora, K. M. Ok, P. S. Halasyamani and T. E. Albrecht-Schmitt,
J. Am. Chem. Soc., 2002, 124, 1951; R. E. Sykora, K. M. Ok, P. S.
Halasyamani, D. M. Wells and T. E. Albrecht-Schmitt, Chem. Mater.,
2002, 14, 2741.
6 H. Y. Chang, S. H. Kim, P. S. Halasyamani and K. M. Ok, J. Am.
Chem. Soc., 2009, 131, 2426; H. Y. Chang, S. H. Kim, K. M. Ok and
P. S. Halasyamani, J. Am. Chem. Soc., 2009, 131, 6865.
7 C.-F. Sun, C.-L. Hu, X. Xu, J.-B. Ling, T. Hu, F. Kong, X.-F. Long and
J.-G. Mao, J. Am. Chem. Soc., 2009, 131, 9486; B.-P. Yang, C.-L. Hu,
X. Xu, C.-F. Sun, J.-H. Zhang and J.-G. Mao, Chem. Mater., 2010, 22,
1545.
8 X. A. Chen, L. Zhang, X. A. Chang, H. P. Xue, H. G. Zang, W. Q.
Xiao, X. M. Song and H. Yan, J. Alloys Compd., 2007, 428, 54.
9 T. C. Shehee, R. E. Sykora, M. K. Kang, P. S. Halasyamani and T. E.
Albrecht-Schmitt, Inorg. Chem., 2003, 42, 457; X. A. Chen, X. A.
Chang, H. G. Zang, Q. Wang and W. Q. Xiao, J. Alloys Compd., 2005,
396, 255.
10 C.-F. Sun, C.-L. Hu, F. K. B.-P. Yang and J.-G. Mao, Dalton Trans.,
2010, 39, 1473.
11 T. Hu, L. Qin, F. Kong, Y. Zhou and J. G. Mao, Inorg. Chem., 2009,
48, 2193.
12 X. A. Chen, H. P. Xue, X. A. Chang, H. G. Zang and W. Q. Xiao,
J. Alloys Compd., 2005, 398, 173; X.-A. Chen, H.-P. Xue, X.-A. Chang,
H.-G. Zang and W.-Q. Xiao, Acta Crystallogr., Sect. C: Cryst. Struct.
Commun., 2005, 61, i109; X. A. Chen, H. P. Xue, X. A. Chang, H. G.
Zang and W. Q. Xiao, J. Alloys Compd., 2006, 415, 261.
13 P. D. Cradwick and A. S. de Endredy, J. Chem. Soc., Dalton Trans.,
1977, 146.
Conclusions
In summary, five new indium(III) iodates, namely, AIn(IO3)4
(A = Li, Na), Rb3In(IO3)6 and A2HIn(IO3)6 (A = Rb, Cs), have
been synthesized and characterized. They exhibit three kinds of
structure types. 1D structure is preferred by the smaller cations, Li+
and Na+, whereas 0D structures are found for the larger ones, K+,
Rb+, and Cs+. Because of the ionic size of Li+ and Na+, (relatively)
small coordination environments are preferred. In LiIn(IO3)4 and
NaIn(IO3)4, the Li+ and Na+ cations are in pseudo-octahedral
coordination environments (Fig. S5†). The large ionic sizes of K+,
Rb+, and Cs+, require larger coordination numbers. In K3In(IO3)6
and Rb3In(IO3)6, the alkali cations are in eightfold coordination
environments whereas in Rb2HIn(IO3)6 and Cs2HIn(IO3)6, they
are 9-coordinated. It is also worthy to point out that Rb2HIn(IO3)6
preferred a low pH value (~0.3) and Rb3In(IO3)6 is formed under
a high pH value (>0.5). Hence both the pH value of the reaction
media and the size of the alkali cation have strong effects on the
chemical compositions and structures of the compounds formed
in the A–In–I–O systems. Since all structures are centrosymmetric,
these compounds are not SHG active, but this does not rule out
the possibility to find SHG materials in these group 13 iodates.
Our future research efforts will be devoted to further studies on
the syntheses, crystal structures and optical properties of other
related phases.
14 P. D. Cradwick and A. S. de Endredy, J. Chem. Soc., Dalton Trans.,
1975, 1926.
15 H. Kueppers, W. Schaefer and G. Z. Will, Kristallogr., 1982, 159, 231.
16 N. I Sorokina, V. V. Ilyukhin, V. R. Kalinin and N. V. Belov, Dokl.
Akad. Nauk, 1979, 247, 360.
17 D. Phanon and I. Gautier-Luneau, Z. Kristallogr., 2006, 221, 635.
18 X. M. Liu, G. H. Li, Y. W. Hu, M. Yang, X. G. Kong, Z. Shi and S. H.
Feng, Cryst. Growth Des., 2008, 8, 2453.
19 D. Phanon and I. Gautier-Luneau, Z. Kristallogr., 2006, 221, 635.
20 P. Kubelka and F. Z. Munk, Tech. Phys., 1931, 12, 593.
21 G. M. Sheldrick, SHELXTL, Crystallographic Software Package,
Version 5.1, Bruker-AXS, Madison, WI, 1998.
22 M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip,
S. J. Clark and M. C. Payne, J. Phys.: Condens. Matter, 2002, 14, 2717;
V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V.
Akhmatskaya and R. H. Nobes, Int. J. Quantum Chem., 2000, 77, 895.
23 D. Vanderbilt, Phys. Rev. B: Condens. Matter, 1990, 41, 7892.
24 J. S. Lin, A. Qteish, M. C. Payne and V. Heine, Phys. Rev. B: Condens.
Matter, 1993, 47, 4174.
25 I. D. Brown and D. Altermatt, Acta Crystallogr., Sect. B: Struct. Sci.,
1985, 41, 244; N. E. Brese and M. O’Keeffe, Acta Crystallogr., Sect. B:
Struct. Sci., 1991, 47, 192.
26 I. Gautier-Luneau, Y. Suffren, H. Jamet and J. Pilme´, Z. Anorg. Allg.
Chem., 2010, 636, 1368.
Acknowledgements
This work was supported by National Natural Science Foundation
of China (Nos. 21003127, 20731006, and 20825104).
Notes and references
1 K. Zhang and X. Wang, Nonlinear optical crystal materials science,
Science Press, Peking, 1996; F. Jona and G. Shirane, Ferroelectric Crys-
tals, Pergamon Press, Oxford, U.K., 1962; W. G. Cady, Piezoelectricity:
an Introduction to the Theory and Applications of Electromechanical
Phenomena in Crystals, Dover, New York, 1964; S. B. Lang, Sourcebook
of Pyroelectricity, Gordon & Breach Science, London, 1974; J. Galy,
G. Meunier, S. Andersson and A. Astro¨m, J. Solid State Chem., 1975,
13, 142.
2 M. S. Wickleder, Chem. Rev., 2002, 102, 2011 (and references therein);
K. M. Ok and P. S. Halasyamani, Chem. Soc. Rev., 2006, 35, 710.
˚
27 C. M. I. Okoye, J. Phys.: Condens. Matter, 2003, 15, 5945; S. P. Huang,
W. D. Cheng, D. S. Wu, X. D. Li, Y. Z. Lan, F. F. Li, J. Shen, H. Zhang
and Y. J. Gong, J. Appl. Phys., 2006, 99, Art No. 013516.
1060 | Dalton Trans., 2011, 40, 1055–1060
This journal is
The Royal Society of Chemistry 2011
©