Organic Process Research & Development
Page 4 of 6
Resolution of α-acetoxysulfides: A new approach to the synthesis
ethers. Presence of excess sulfuryl chloride halogenated the ester
in the α-position. This dichlorinated intermediate was cyclized in
water to generate the oxathiolane used in synthesis of 3TC and
FTC. By focusing on the chemical industry’s supply chain and base
reagents, a novel route was tailored to fit starting materials.
Combining a target-oriented retrosynthetic perspective with a
supply centered viewpoint served as a useful constraint to generate
creative and novel solutions for longstanding challenges.
of homochiral S, O –Acetals, Tetrahedron Asymmetry, 1995, 6,
1903-1906. f) Milton, J.; Brand, S.; Jones, M.F.; Rayner, C.M.
Enantioselective enzymatic synthesis of the anti-viral agent
lamivudine (3TC™), Tetrahedron. Lett., 1995, 36, 6961-6964. g)
Cousins, R.P.C.; Mahmoudian, M.; Youds, P.M. Enzymic
resolution of oxathiolane intermediates - an alternative approach to
the anti-viral agent lamivudine (3TC™), Tetrahedron: Asymmetry,
1995, 6, 393-396. h) Jin, H.; Siddiqui, A.; Evans, C.A.; Tse,
H.L.A.; Mansour, T.S.; Goodyer, M.D.; Ravenscroft, P.; Beels,
C.D. Diastereoselective Synthesis of the Potent Antiviral Agent (-
)-2'-Deoxy-3'-thiacytidine and Its Enantiomer, J. Org. Chem.,
1995, 60, 2621-2623. i) Goodyear, M.D.; Dwyer, P.O.; Hill, M.L.;
Whitehead, A.J.; Hornby, R.; Hallet, P. Process for the
Diastereoselective Synthesis of Nucleoside Analogues,
US6051709, 2000. j) Li, J.-Z.; Gao, L.-X.; Ding, M.-X. The
Chemical Resolution of Racemic cis-2-hydroxymethyl-5-
(cytosine-1′-yl)-1,3-oxathiolane (BCH-189)—One Direct method
to Obtain Lamivudine as Anti-HIV and Anti-HBV Agent, Synth.
Commun., 2002, 32, 2355-2359. k) Goodyear, M.D.; Hill, M.L.;
West, J.P.; Whitehead, A.J. Practical enantioselective synthesis of
lamivudine (3TC™) via a dynamic kinetic resolution, Tetrahedron
Lett., 2005, 46, 8535-8538. l) Roy, B.N.; Singh, G.P.; Srivastava,
D.; Jadhav, H.S.; Saini, M.B.; Aher, U.P. A Novel Method for
Large-Scale Synthesis of Lamivudine through Cocrystal
Formation of Racemic Lamivudine with (S)-(−)-1,1′-Bi(2-
naphthol) [(S)-(BINOL)], Org. Process Res. Dev., 2009, 13, 450-
455. m) Reddy, B.P.; Reddy, K.R.; Reddy, R.R.; Reddy, D.M.;
Srinivas, A.S. Optical resolution of substituted 1, 3-oxathiolane
nucleosides, US20110245497, 2011. n) Hu, L.; Schaufelberger,
F.; Zhang, Y.; Ramström, O. Efficient asymmetric synthesis of
lamivudine via enzymatic dynamic kinetic resolution, Chem.
Commun., 2013, 49, 10376-10378. o) Chen, Y.; Zhang, X.; Zheng,
G.; Gao, S. Preparation of the Enantiomerically Enriched Precursor
of Lamivudine (3TCTM) via Asymmetric Catalysis Mediated by
Klebsiella Oxytoca. Process Biochem., 2019, 81, 77−84. p) Zhang,
Y.; Sun, Y.; Tang, H.; Zhao, Q.; Ren, W.; Yv, K.; Yang, F.; Wang,
F.; Liu, J. One-Pot Enzymatic Synthesis of Enantiopure 1,3-
Oxathiolanes Using Trichosporon laibachii Lipase and the Kinetic
Model, Org. Process Res. Devel., 2020, 24, 579-587. q) Snead,
D.R.; McQuade, D.T.; Ahmad, S.; Krack, R.; Stringham, R.W.;
Burns, J.M.; Abdiaj, I.; Gopalsamuthiram, V.; Nelson, R.C.;
Gupton, B.F. An Economical Route to Lamivudine Featuring a
Novel Strategy for Stereospecific Assembly, Org. Process Res.
Devel., 2020, ASAP.
1
2
3
4
5
6
7
8
ASSOCIATED CONTENT
Supporting Information
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
The Supporting Information includes experimental details and
compound characterization. It is available free of charge on the
ACS Publications website including experimental details.
AUTHOR INFORMATION
Corresponding Author
* David Snead
Medicines for All Institute
737 N 5th St.
Box 980100
Richmond, Virginia 23298
* D. Tyler McQuade
Medicines for All Institute
737 N 5th St.
Box 980100
Richmond, Virginia 23298
Author Contributions
‡These authors contributed equally.
Notes
The authors declare no competing financial interests.
3) a) Nair, D.S.; Rai, B.P.; Nizar, H.; Meeran, P.N. Tewari, N. Process
and intermediates for the preparation of substituted 1,3-
oxathiolanes, especially lamivudine, US20100311961, 2010. b)
Tewari, N.; Nair, D.S.; Nizar, H.; Meeran, P.N.; Prasad, M. Process
ACKNOWLEDGMENT
We thank the Bill and Melinda Gates Foundation for their
longstanding support of our research.
for
the
preparation
of
substituted
1,3-oxathiolanes,
US20100311970, 2010. c) Shankar, R.; Vennapureddy, R.R.;
Sayyed, A.P.; Ankaraju, M.K.; Madasu, S.B.; Vascuri, J.R.;
Meenakshisunderam, S. Process for preparation of cis-nucleoside
REFERENCES
1) Panos, Z.; Fox, J.; Prabhu, V. “HIV Market Report” from Clinton
Health Access Initiative, 2019, 10. Accessed Feb. 6, 2020 at:
derivative,
US20110282046, 2011. d) Rama, S.; Gorantla,
S.C.S.; Vadali, L.R.; Inupakutika, V.B.K.S.; Dasari, S.R.;
Mittapelly, N.; Singh, S.K.; Datta, D. Novel process for the
preparation of cis-nucleoside derivative, US20120295930, 2012.
e) Roy, B.N.; Singh, G.P.; Srivastava, D.; Aher, U.P.; Patil, S.U.
Stereoselective process for preparation of 1,3-oxathiolane
nucleosides, US20130296562, 2013. f) Caso, M.F.; D’Alonzo, D.;
D’Errico, S.; Palumbo, G.; Guaragna, A. Highly Stereoselective
Synthesis of Lamivudine (3TC) and Emtricitabine (FTC) by a
Novel N-Glycosidation Procedure, Org. Lett., 2015, 17, 2626-
2629. g) Mandala, D.; Watts, P. An Improved Synthesis of
Lamivudine and Emtricitabine, Chemistry Select, 2017, 2, 1102-
1105. h) Aher, U.P.; Srivastava, D.; Jadhav, H.S.; Singh, G.P.;
Jayashree, B.S.; Shenoy, G.G. Large-Scale Stereoselective
Synthesis of 1,3-Oxathiolane Nucleoside, Lamivudine, via ZrCl4-
Mediated N-Glycosylation, Org. Process Res. Dev., 2020, 24, 387-
397.
2) a) Humber, D.C.; Jones, M.F.; Payne, J.J.; Ramsay, M.V.J.;
Zacharie, B.; Jin, H.; Siddiqui, A.; Evans, C.A.; Tse, H.L.A.;
Mansour, T.S. Expeditious preparation of (−)-2′-deoxy-3′-
thiacytidine (3TC), Tetrahedron Lett., 1992, 33, 4625-4628. b)
Hoong, L.K.; Strange, L.E.; Liotta, D.C.; Koszalka, G.W.; Burns,
C.L.; Schinazi, R.F. Enzyme-mediated enantioselective
preparation of pure enantiomers of the antiviral agent 2',3'-
dideoxy-5-fluoro-3'-thiacytidine (FTC) and related compounds, J.
Org. Chem., 1992, 57, 5563-5565. c) Jeong, L.S.; Schinazi, R.F.;
Beach, W.J.; Kim, H.O.; Nampallia, S.; Shanmuganathan, K.;
Alves, A.J.; McMillan, A.; Chu, C.K.; Mathis, R. Asymmetric
synthesis and biological evaluation of β-L-(2R,5S)- and α-L-
(2R,5R)-1,3-oxathiolane-pyrimidine and -purine nucleosides as
potential anti-HIV agents, J. Med. Chem., 1993, 36, 181-195. d)
Mahmoudian, M.; Baines, B.S.; Drake, C.S.; Hale, R.S.; Jones, P.;
Piercey, J.E.; Montgomery, D.S.; Purvis, I.J.; Storer, R.; Dawson,
M.J.; Lawrence, G.C. Enzymatic production of optically pure (2′R-
cis)-2′-deoxy-3′-thiacytidine (3TC, lamivudine): A potent anti-
HIV agent, Enzyme Microb. Technol., 1993, 15, 749-755. e)
Milton, J.; Brand, S.; Jones, M.F.; Rayner, C.M. Enzymatic
4) Smit, V.A.; Zerirov, N.S.; Bodrikov, I.V.; Krimer, M.Z.
Episulfonium ions: myth and reality, Acc. Chem. Res., 1979, 12,
282-288.
5) a) Martin, H.M. Manufacture of thio-acids and derivatives,
US2413361, 1945. b) Coons, R.J.; Todaro, C.A. Process for
producing alpha-mercapto-carboxylic acids, US2594030, 1950.
4
ACS Paragon Plus Environment