4 4
whereas the intra-tetrameric Cu–Cu distances in Cu I are
11a
˚
reduced by less than 0.3 A at the excited state. This speculation
À1
is verified by the much larger Stokes shift of LE (22 751 cm
À1
)
than that of HE (8159 cm ) in this work.
Taken together, we have demonstrated and interpreted in
this work a supramolecular dual emissive and thermochromic
system incorporating two classical coordination luminophores,
4 4 3 3
Cu I and Cu Pz . The tunable dual emissive behavior of this
luminescent coordination polymer is the consequence of a thermal
equilibrium between two separated, competitive excited states.
The strategy presented herein will be taken advantage by us to
fabricate diverse photofunctional coordination polymers by finely
tuning the structure and property of each separated luminophore.
This work is financially supported by National Basic Research
Program of China (973 Program, 2012CB821700), the National
Natural Science Foundation for Distinguished Young Scholars of
China (20825102) and the National Natural Science Foundation
of China (20771072).
Fig. 3 Proposed potential energy diagram for the dual emission.
Notes: Dd : the deviation of inter-trimeric Cu–Cu distances in the
Cu Pz unit (LE) between the excited state and ground state; Dd
the deviation of intra-tetrameric Cu–Cu distances in the Cu unit
HE) between the triplet excited state and ground state; E: energy.
1
[
3
3
]
2
2
:
4 4
I
(
The emission lifetime measurements (see Table S3 in ESIw)
reveal a more complicated situation for the components and
Notes and references
the interplay of the excited states. At all detection wavelengths
1
V. Balzani, G. Bergamini, S. Campagna and F. Puntoriero, Top.
Curr. Chem., 2007, 280, 1.
(excited at 370 nm and 270 nm, monitored at 530 nm and 700 nm,
respectively) and various temperatures (from 50 K to 293 K),
the luminescence decays require fitting to triexponential equations
2 (a) N. Armaroli, G. Accorsi, F. Cardinali and A. Listorti, Top.
Curr. Chem., 2007, 280, 69; (b) A. Barbieri, G. Accorsi and
N. Armaroli, Chem. Commun., 2008, 2185.
9
c
other than biexponential ones. In light of our recent report
3
(a) M. Amelia, L. Zou and A. Credi, Coord. Chem. Rev., 2010,
254, 2267; (b) K. H.-Y. Chan, H.-S. Chow, K. M.-C. Wong, M. C.-L.
Yeung and V. W.-W. Yam, Chem. Sci., 2010, 1, 477.
showing that the *Cu exhibits longer lifetime (at ms scale) and
6
1
0a
monoexponential decay, and literature
showing that the
4
(a) M. D. Allendorf, A. A. Bauer, R. K. Bhakta and R. J. T. Houk,
Chem. Soc. Rev., 2009, 38, 1330; (b) Y. Cui, Y. Yue, G. Qian and
B. Chen, Chem. Rev., 2011, DOI: 10.1021/cr200101d.
*
Cu exhibits relatively shorter lifetime (also at ms scale) and
4
its cluster-centered excited state is attributed to a combination
of iodide to copper charge transfer and d–s transitions, we
5 (a) E. C. Glazer, D. Magde and Y. Tor, J. Am. Chem. Soc., 2005,
27, 4190; (b) E. C. Glazer, D. Magde and Y. Tor, J. Am. Chem.
1
tentatively assign the shorter t
1
and t
2
to *Cu
4
, and the longer
at various
Soc., 2007, 129, 8544; (c) Y. Leydet, D. M. Bassani, G. Jonusauskas
and N. D. McClenaghan, J. Am. Chem. Soc., 2007, 129, 8688;
t
temperatures are larger when excited at 260 nm and monitored
3
to *Cu . The fractional contributions of t
6
3
(d) M. Nishikawa, K. Nomoto, S. Kume, K. Inoue, M. Sakai,
at 700 nm than those when excited at 360 nm and monitored at
M. Fujii and H. Nishihara, J. Am. Chem. Soc., 2010, 132, 9579.
(a) G. Zhang, G. M. Palmer, M. W. Dewhirst and C. L. Fraser,
Nat. Mater., 2009, 8, 747; (b) N. Stevens, N. O’Connor,
H. Vishwasrao, D. Samaroo, E. R. Kandel, D. L. Akins,
C. M. Drain and N. J. Turro, J. Am. Chem. Soc., 2008, 130, 7182.
7 R. Peng, M. Li and D. Li, Coord. Chem. Rev., 2010, 254, 1, and
references therein.
(a) S.-Z. Zhan, M. Li, J.-Z. Hou, J. Ni, D. Li and X.-C. Huang,
Chem.–Eur. J., 2008, 14, 8916; (b) J.-Z. Hou, M. Li, Z. Li,
S.-Z. Zhan, X.-C. Huang and D. Li, Angew. Chem., Int. Ed., 2008,
6
540 nm; this matches with the above excitation and emission data
and testifies our assignment of t to *Cu and t and t to *Cu .
3
6
1
2
4
We shall propose a photophysical model (Fig. 3) to illustrate
the dynamic interplay between *Cu and *Cu functioning in
4
6
this dual emissive and thermochromic complex. Upon excitation,
the two excited clusters of HE (*Cu , with two coupled
components) and LE (*Cu ) emit their characteristic maximum
8
4
6
4
7, 1711; (c) M. Li, Z. Li and D. Li, Chem. Commun., 2008, 3390.
emission bands at 530 nm and 700 nm, respectively. Ideally,
the lower energy excitation (370 nm) can only populate the HE
excited state, but at room and higher temperatures, a heating
procedure favors the nonradiative relaxation of the HE excited
9
(a) J. He, Y.-G. Yin, T. Wu, D. Li and X.-C. Huang, Chem.
Commun., 2006, 2845; (b) J.-X. Zhang, J. He, Y.-G. Yin,
M.-H. Hu, D. Li and X.-C. Huang, Inorg. Chem., 2008,
47, 3471; (c) G.-F. Gao, M. Li, S.-Z. Zhan, Z. Lv, G.-h. Chen
and D. Li, Chem.–Eur. J., 2011, 17, 4113.
1
state to the LE excited state by overcoming the energy barrier DE .
1
1
0 (a) P. C. Ford, E. Cariati and J. Bourassa, Chem. Rev., 1999,
9, 3625; (b) V. W.-W. Yam and K. K.-W. Lo, Chem. Soc. Rev.,
1999, 28, 323.
When increasing the temperature, the population of the LE
excited state becomes larger. However, in lower temperatures, the
energy barrier DE1 disfavors the conversion from HE to
LE excited states. In contrast, the higher energy excitation
9
1 (a) F. De Angelis, S. Fantacci, A. Sgamellotti, E. Cariati, R. Ugo and
P. C. Ford, Inorg. Chem., 2006, 45, 10576; (b) H. Kitagawa, Y. Ozawa
and K. Toriumi, Chem. Commun., 2010, 46, 6302; (c) S. Perruchas,
X. F. Le Goff, S. Maron, I. Maurin, F. Guillen, A. Garcia, T. Gacoin
and J.-P. Boilot, J. Am. Chem. Soc., 2010, 132, 10967.
2 (a) I. I. Vorontsov, A. Y. Kovalevsky, Y.-S. Chen, T. Graber,
M. Gembicky, I. V. Novozhilova, M. A. Omary and P. Coppens,
Phys. Rev. Lett., 2005, 94, 193003; (b) T. Grimes, M. A. Omary,
H. V. R. Dias and T. R. Cundari, J. Phys. Chem. A, 2006, 110, 5823.
13 (a) H. V. R. Dias, H. V. K. Diyabalanage, M. G. Eldabaja,
O. Elbjeirami, M. A. Rawashdeh-Omary and M. A. Omary,
J. Am. Chem. Soc., 2005, 127, 7489; (b) T. Jozak, Y. Sun,
Y. Schmitt, S. Lebedkin, M. Kappes, M. Gerhards and
W. R. Thiel, Chem.–Eur. J., 2011, 17, 3384.
(
270 nm) can populate a major number of the LE excited state
and a minor number of the HE excited state, and the conversion
from LE to HE excited states is unlikely because the energy
1
barrier DE
of view, the difference of the photophysical behaviors between
Cu and *Cu derives from the different geometric flexibility
of the excited states of Cu and [Cu Pz . Previous theoretical
studies indicate that the inter-trimeric Cu–Cu distances in
2
1
is much higher than DE . From the structural point
*
4
6
I
4 4
3
3 2
]
9
c,12
˚
Cu Pz ] can contract up to 1.07 A at the excited state,
3 3 2
[
This journal is c The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 12441–12443 12443