10.1002/adsc.201701643
Advanced Synthesis & Catalysis
[1] a) J. P. Michael, Nat. Prod. Rep. 2005, 22, 603; b) I.
Coldham, R. Hufton, Chem. Rev. 2005, 105, 2765; c)
J. P. Michael, Nat. Prod. Rep. 2007, 24, 191; d) J. C.
Andrez, Beilstein J. Org. Chem. 2009, 5, No. 33; e) L.
S. Fernandez, M. S. Buchanan, A. R. Carroll, Y. J.
Feng, R. J. Quinn, V. M. Avery, Org. Lett. 2009, 11,
329.
[9] a) Z. He, T. Luo, M. Hu, Y. Cao, J. Hu, Angew. Chem.
Int. Ed. 2012, 51, 3944; b) Z. He, M. Hu, T. Luo, L.
Li, J. Hu, Angew. Chem., Int. Ed. 2012, 51, 11545; c)
Z. Li, Z. Cui, Z. -Q. Liu, Org. Lett. 2013, 15, 406; d)
G. Li, T. Wang, F. Fei, Y.-M. Su, Y. Li, Q. Lan, X.-S.
Wang, Angew. Chem. Int. Ed. 2016, 55, 3491; e) H.-
R. Zhang, D.-Q. Chen, Y.-P. Han, Y.-F. Qiu, D.-P.
Jin, X.-Y. Liu, Chem. Commun. 2016, 52, 11827; f)
Y.-L. Lai, D.-Z. Lin, J.-M. Huang, J. Org. Chem.
2017, 82, 597.
[2] a) S. Nicolai, C. Piemontesi, J. Waser, Angew. Chem.
Int. Ed. 2011, 50, 4680; b) D. Koley, Y. Krishna, K.
Srinivas, A. A. Khan, R. Kant, Angew. Chem. Int. Ed.
2014, 53, 13196; c) D. Kalaitzakis, M. Triantafyllakis,
M. Sofiadis, D. Noutsias, G. Vassilikogiannakis,
Angew. Chem. Int. Ed. 2016, 55, 4605.
[10] a) M.-C. Belhomme, T. Poisson, X. Pannecoucke,
Org. Lett. 2013, 15, 3428; b) G. Caillot, J. Dufour,
M.-C. Belhomme, T. Poisson, L. Grimaud, X.
Pannecoucke, I. Gillaizeau, Chem. Commun. 2014,
50, 5887; c) Z. Feng, Q.-Q. Min, H.-Y. Zhao, J.-W.
Gu, X. Zhang, Angew. Chem. Int. Ed. 2015, 54, 1270;
d) C. Shao, G. Shi, Y. Zhang, S. Pan, X. Guan, Org.
Lett. 2015, 17, 2652; e) H. Xu, D. Wang, Y. Chen,
W. Wan, H. Deng, K. Ma, S. Wu, J. Hao, H. Jiang,
Org. Chem. Front. 2017, 7, 1239; f) X. Wang, S.
Zhao, J. Liu, D. Zhu, M. Guo, X. Tang, G. Wang,
Org. Lett. 2017, 19, 4187; g) N. Wang, L. Li, Z.-L.
Li, N.-Y Yang, Z. Guo, H.-X. Zhang, X.-Y. Liu. Org.
Lett. 2016, 18, 6026; h) Z.-L. Li, X.-H. Li, N. Wang,
N.-Y. Yang, X.-Y. Liu. Angew. Chem. Int. Ed. 2016,
55, 15100; i) L. Li, Z.-L. Li, Q.-S. Gu, N. Wang, X.-
Y. Liu. Sci. Adv. 2017, 3, e1701487; j) Y. Li, J. Liu,
S. Zhao, X. Du, M. Guo, W. Zhao, X. Tang, G.
Wang, Org. Lett. 2018, 20, 917.
[3] a) P. G. Andersson, J.-E. Bäckvall, J. Am. Chem. Soc.
1992, 114, 8696; b) K.-T. Yip, M. Yang, K.-L. Law,
N.-Y. Zhu, D. Yang, J. Am. Chem. Soc. 2006, 128,
3130; c) W. Du, Q. Gu, Z. Li, D. Yang, J. Am. Chem.
Soc. 2015, 137, 1130; d) L. Ye, K.-Y. Lo, Q. Gu, D.
Yang, Org. Lett. 2017, 19, 308; e) Q.-S. Gu, D. Yang,
Angew. Chem. Int. Ed. 2017, 56, 5886; f) X. Nie, C.
Cheng, G. Zhu, Angew. Chem. Int. Ed. 2017, 56, 1898.
[4] a) A. R. Reddy, C.-Y. Zhou, Z. Guo, J. Wei, C.-M.
Che, Angew. Chem. Int. Ed. 2014, 53, 14175; b) H.-D.
Xu, Z.-H. Jia, K. Xu, H. Zhou, M.-H. Shen, Org. Lett.
2015, 17, 66.
[5] Recent reviews: a) K. Müller, C. Faeh, F. Diederich,
Science 2007, 317, 1881; b) S. Purser, P. R. Moore, S.
Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37,
320; c) D. O’Hagan, Chem. Soc. Rev. 2008, 37, 308;
d) V. Gouverneur, K. Seppelt, Chem. Rev. 2015, 115,
563; e) Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J.
L. Aceꢀa, V. A. Soloshonok, K. Izawa, H. Liu, Chem.
Rev. 2016, 116, 422.
[11] a) Z. Zhang, X. Tang, C. S. Thomoson, W. R. Dolbier,
Jr. Org. Lett. 2015, 17, 3528; b) J. Liao, L. Fan, W.
Guo, Z. Zhang, J. Li, C. Zhu, Y. Ren, W. Wu, H.
Jiang, Org. Lett. 2017, 19, 1008; c) X.-F. Li, J.-S.
Lin, X.-Y. Liu, Synthesis 2017, 49, 4213; d) J.-S. Lin,
F.-L. Wang, X.-Y. Dong, W.-W. He, Y. Yuan, S.
Chen, X.-Y. Liu, Nat. Commun. 2017, 8, 14841.
[6] a) J. A. Erickson, J. I. McLoughlin, J. Org. Chem.
1995, 60, 1626; b) N. A. Meanwell, J. Med. Chem.
2011, 54, 2529; c) X. Shen, W. Zhang, C. Ni, Y. Gu, J.
Hu, J. Am. Chem. Soc. 2012, 134, 16999; d) Q. Zhou,
A. Ruffoni, R. Gianatassio, Y. Fujiwara, E. Sella, D.
Shabat, P. S. Baran, Angew. Chem. Int. Ed. 2013, 52,
3949; e) J. Zhu, Y. Liu, Q. Shen, Angew. Chem. Int.
Ed. 2016, 55, 9050; f) Q. Xie, C. Ni, R. Zhang, L. Li,
J. Rong, J. Hu, Angew. Chem., Int. Ed. 2017, 56, 3206.
[12] a) M. Zhang, W. Li, Y. Duan, P. Xu, S. Zhang, C.
Zhu, Org. Lett. 2016, 18, 3266; b) M. Ke, Q. Song,
Chem. Commun. 2017, 53, 2222; c) L.-C. Yu, J.-W.
Gu, S. Zhang, X. Zhang J. Org. Chem. 2017, 82,
3943; d) Y. Lv, W. Pu, Q. Chen, Q. Wang, J. Niu, Q.
Zhang, J Org. Chem. 2017, 82, 8282; e) Y. Lv, W.
Pu, Q. Wang, Q. Chen, J. Niu, Q. Zhang, Adv. Syn.
Catal. 2017, 359, 3114; f) H. Chen, X. Wang, M.
Guo, W. Zhao, X. Tang, G. Wang, Org. Chem.
Front. 2017, 4, 2403.
[7] a) Q. Qi, Q. Shen, L. Lu, J. Am. Chem. Soc. 2012, 134,
6548; b) L. An, Y.-L. Xiao, Q.-Q. Min, X. Zhang,
Angew. Chem. Int. Ed. 2015, 54, 9079; c) Y.-L. Xiao,
W.-H. Guo, G.-Z. He, Q. Pan, X. Zhang, Angew.
Chem. Int. Ed. 2014, 53, 9909; d) Q.-Q. Min, Z. Yin,
Z. Feng, W.-H. Guo, X. Zhang, J. Am. Chem. Soc.
2014, 136, 1230; e) Y.-L. Xiao, Q.-Q. Min, C. Xu, R.-
W. Wang, X. Zhang, Angew. Chem. Int. Ed. 2016, 55,
5837; f) Z. Feng, Q.-Q. Min, X.-P. Fu, L. An, X.
Zhang, Nat. Chem. 2017, 9, 918.
[13] a) D. W. Konas, J. K. Coward, Org. Lett. 1999, 1,
2105; b) H. Nagashima, Y. Isono, S.-i. Iwamatsu. J.
Org. Chem. 2001, 66, 315; c) B.-H. Li, K.-L. Li, Q.-
Y. Chen, J. Fluorine. Chem. 2012, 133, 163; d) S.-L.
Shi, S. L. Buchwald, Angew. Chem. Int. Ed. 2015,
54, 1646; e) J. Giacoboni, R. P. Clausen, M. Marigo,
Synlett 2016, 27, 2803.
[14] Examples for the multi-step synthesis of difluorinated
pyrrolizidines and indolizidines: a) T. Bootwicha, D.
Panichakul, C. Kuhakarn, S. Prabpai, P. Kongsaeree,
P. Tuchinda, V. Reutrakul, M. Pohmakotr, J. Org.
Chem. 2009, 74, 3798; b) W. Thaharn, T. Bootwicha,
D. Soorukram, C. Kuhakarn, S. Prabpai, P.
Kongsaeree, P. Tuchinda, V. Reutrakul, M.
[8] a) S. Ge, S. I. Arlow, M. G. Mormino, J. F. Hartwig, J.
Am. Chem. Soc. 2014, 136, 14401; b) Z. Feng, F.
Chen, X. Zhang, Org. Lett. 2012, 14, 1938; c) J. Zhu,
C. Ni, B. Gao, J. Hu, J. Fluorine Chem. 2015, 171,
139; d) T. Xia, L. He, Y. A. Liu, J. F. Hartwig, X.
Liao, Org. Lett. 2017, 19, 2610.
5
This article is protected by copyright. All rights reserved.