10.1002/chem.201800957
Chemistry - A European Journal
COMMUNICATION
Xu, Org. Lett. 2012, 14, 1090; h) F. J. Robertson, J. Wu, J. Am. Chem.
Soc. 2012, 134, 2775.
products 6 and 7 without decreasing the enantioselectivity.
Absolute stereochemistry of oxidized sulfone 8 was confirmed
by X-ray crystallographic analysis, where stereochemical
inversion was observed, supporting the predominance of SN2
nucleophilic attack of the thionoester rather than the carbocation
pathway.
[5]
[6]
For reviews on donor-acceptor cyclopropanes: a) T. F. Schneider, J.
Kaschel, D. B. Werz, Angew. Chem. Int. Ed. 2014, 53, 5504; Angew.
Chem. 2014, 126, 5608; b) M. A. Cavitt, L. H. Phun, S. France, Chem.
Soc. Rev. 2014, 43, 804.
a) A. F. G. Goldberg, N. R. O’Connor, R. A. Craig II, B. M. Stoltz, Org.
Lett. 2012, 14, 5314; b) Y. X. Sun, G. S. Yang, Z. Chai, X. L. Mu, J.
Chai, Org. Biomol. Chem. 2013, 11, 7859; c) S.-W. Wang, W.-S. Guo,
L.-R. Wen, M. Li, RSC Adv. 2015, 5, 47418. Very recently, Werz at al
reported elegant [3+2] cycloaddition of D-A cyclopropanes using
relatively stable thioketones such as thiobenzophenone. When the
unsymmetrical thioketones were used, 2,5-cis-configured THTs were
obtained in moderate diastereoselectivity. See, d) A. U. Augustin, M.
Busse, P. G. Jones, D. B. Werz, Angew. Chem. Int. Ed. 2017, 56,
14293; Angew. Chem. 2017, 129, 14481; e) A. U. Augustin, M. Sensse,
P. G. Jones, D. B. Werz, Org. Lett. 2018, 20, 820.
In summary, we developed a catalytic [3+2] cycloaddition
of D-A cyclopropanes with thionoesters for the synthesis of
trans-configured THTs. Aromatic and aliphatic thionoesters were
applicable to the present catalysis. Thionolactone provided the
hitherto-inaccessible
[5,5]-spiro-S,O-ketal
ring
system.
Transformation mediated by TMSOTf delivered trans-configured
THT derivatives with excellent diastereoselectivity. The present
methodology was applied to an enantioenriched THT synthesis
using chiral cyclopropane. Further applications of this trans-
configured THT synthetic method to biologically active
compounds are in progress.
[7]
a) D. P. Patrick, S. J. Jeffrey, J. Am. Chem. Soc. 2005, 127, 16014; b)
D. P. Patrick, D. S. Shanina, T. P. Andrew, L. Wei, S. J. Jeffrey, J. Am.
Chem. Soc. 2008, 130, 8642; c) T. P. Andrew, S. J. Jeffrey, J. Am.
Chem. Soc. 2009, 131, 3122; d) T. P. Andrew, G. S. Austin, J. N.
Andrew, S. J. Jeffrey, J. Am. Chem. Soc. 2010, 132, 9688; e) F. de
Nanteuil, E. Serrano, D. Perrotta, J. Waser, J. Am. Chem. Soc. 2014,
136, 6239.
Acknowledgements
[8]
[9]
For reviews on thiocarbonyl compounds: a) P. Metzner, Synthesis
1992, 1185; b) P. Metzner, Top. Curr. Chem. 1999, 204, 127.
a) H. G. Giles. R. A. Marty. P. de Mayo, Can. J. Chem. 1976, 54, 537;
b) E. Vedejs, J. S. Stults, R. G. Wilde, J. Am. Chem. Soc. 1988, 110,
5452; c) N. Takeda, N. Tokitoh, R. Okazaki, Chem. Eur. J. 1997, 3, 62.
This work was financially supported by JSPS KAKENHI Grant
Number JP15H05846
in
Middle
Molecular Strategy,
JP16H01032 in Precisely Designed Catalysts with Customized
Scaffolding and Platform for Drug Discovery, Informatics, and
Structural Life Science from MEXT. Drs. Kazuteru Usui and
Yasufumi Fuchi are gratefully acknowledged for analytical
measurement assistance. We are grateful to Prof. Hirai’s group
for the use of polarimeter.
[10] a) J. Kaschel, C. D. Schmidt, M. Mumby, D. Kratzert, D. Stalke, D. B.
Werz, Chem. Commun. 2013, 49, 4403; b) J. Hejmanowska, M.
Jasiński, G. Mlostoń, Ł. Albrecht, Eur. J. Org. Chem. 2017, 950.
[11] a) B. A. Jones, J. S. Bradshaw, Chem. Rev. 1984, 84, 17; b) M. P.
Cava, M. I. Levinson, Tetrahedron 1985, 41, 5061; c) V. S. Rajender, K.
Dalip, Org. Lett. 1999, 1, 697; d) M. A. Shalaby, H. Rapoport, J. Org.
Chem. 1999, 64, 1065.
[12] a) S. L. Baxter, J. S. Bradshaw, J. Org. Chem. 1981, 46, 831; b) W. H.
Bunnelle, B. R. McKinnis, B. A. Narayanan, J. Org. Chem. 1990, 55,
768; c) H. K. Lee, J. Kim, C. S. Pak, Tetrahedron Lett. 1999, 40, 6267.
[13] a) K. C. Nicolaou, C.-K. Hwang, M. E. Duggan, K. Bal Reddy, B. E.
Marron, D. G. McGarry, J. Am. Chem. Soc. 1986, 108, 6800; b) K. C.
Nicolaou, D. G. McGarry, P. K. Sommers, J. Am. Chem. Soc. 1990,
112, 3696; c) K. C. Nicolaou, D. G. McGarry, P. K. Sommers, B. H. Kim,
W.W. Ogilvie, G. Yiannikouros, C. V. C. Prasad, C. A. Veale, R. R.
Hark, J. Am. Chem. Soc. 1990, 112, 6263.
Keywords: cycloaddition • thionoester • iron •
tetrahydrothiophene • stereoselectivity
[1]
a) W. Trost, IRCS Med. Sci. 1986, 14, 905; b) P. J. De Clercq, Chem.
Rev. 1997, 97, 1755; c) S.-B. Hwang, J. Biol. Chem. 1988, 263, 3225;
d) M. Yoshikawa, T. Morikawa, H. Matsuda, G. Tanabe, O. Muraoka,
Bioorg. Med. Chem. 2002, 10, 1547; e) P. C. B. Page, H. Vahedi, K. J.
Batchelor, S. J. Hindley, M. Edgar, P. Beswick, Synlett 2003, 1022; f) L.
S. Jeong, D. Z. Jin, H. O. Kim, D. H. Shin, H. R. Moon, P. Gunaga, M.
W. Chun, Y.-C. Kim, N. Melman, Z.-G. Gao, K. A. Jacobsen, J. Med.
Chem. 2003, 46, 3775; g) D. Meng, W. Chen, W. Zhao, J. Nat. Prod.
2007, 70, 824; h) G. Tanabe, M. Sakano, T. Minematsu, H, Matsuda, M.
Yoshikawa, O. Muraoka, Tetrahedron 2008, 64, 10080. i) P. Besada, M.
Pérez, G. Gómez, Y. Fall, Tetrahedron Lett. 2009, 50, 6941.
[14] a) P. Reynaud, Y. E. Hamad, C. Davrinche, E. Nguyen-Tri-Xuong, G.
Tran, P. Rinjard, J. Heterocyclic Chem. 1992, 29, 991; b) T. Miura, Y.
Funakoshi, Y. Fujimoto, J, Nakahashi, M. Murakami, Org. Lett. 2015,
17, 2454.
[15] Without strict drying technique, by-product was observed via water
substitution followed by ring opening reaction.
MeO2C
Lewis acid
H2O
CO2Me
MeO2C
MeO2C
CO2Me
CO2Me
[2]
[3]
a) H. D. Kaesz, R. Uson, A. Laguna, M. Laguna, D. A. Briggs, H. H.
Murray, J. P. Fackler Jr., Inorganic Syntheses 1989, 26, 85; b) E.
Hauptman, R. Shapiro, W. Marshall, Organometallics 1998, 17, 4976.
a) K. Julienne, P. Metzner, J. Org. Chem. 1998, 63, 4532; b) J. Zanardi,
C. Leriverend, D. Aubert, K. Julienne, P. Metzner, J. Org. Chem. 2001,
66, 5620; c) V. K. Aggarwal, E. Alonso, G. Fang, M. Ferrara, G. Hynd,
M. Porcelloni, Angew. Chem. Int. Ed. 2001, 40, 1430; Angew. Chem.
2001, 113, 1482; d) V. K. Aggarwal, I. Bae, H.-Y. Lee, J. Richardson, D.
T. Williams, Angew. Chem., Int. Ed. 2003, 42, 3274; Angew. Chem.
2003, 115, 3396; e) Y. Gui, S. Shen, H.-Y. Wang, Z. Y. Li, Z.-Z. Huang,
Chem. Lett. 2007, 36, 1436.
Ph
O
OMe
Ph
OH
Ph
–MeOH
Ph
S
Ph
S
S
Ph
[16] See Supporting Information for details.
[17] G. Mloston, P. Grzelak, R. Hamera-Fałdyga, M. Jasiński, P. Pipiak,
Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 204.
[18] a) T. Tsunoda, M. Suzuki, R. Noyori, Tetrahedron Lett. 1979, 48, 4679;
b) S. R. Shenoy, D. M. Smith, K. A. Woerpel, J. Am. Chem. Soc. 2006,
128, 8671.
[4]
a) G. Mloston, R. Huisgen, H. Huber, D. S. Stephenson, J. Heterocyclic
Chem. 1999, 36, 959; b) S. Karlsson, H.-E, Hogberg, Org. Lett. 1999, 1,
1667; c) Huisgen, G. Mloston, H. Giera, E. Langhals, Tetrahedron,
2002, 58, 507; d) M. Woźnicka, M. Rutkowska, G. Mloston, A.
Majchrzak, H. Heimgartner, Polish, J. Chem. 2006, 80, 1683; e) G. Luo,
S. Zhang, W. Duan, W. Wang, Tetrahedron Lett. 2009, 50, 2946; f) O.
Illa, M. Arshad, A. Ros, E. M. McGarrigle, V. K. Aggarwal, J. Am. Chem.
Soc. 2010, 132, 1828; g) J.-B. Ling, Y, Su. H.-L. Zhu, G.-Y. Wang, P.-F.
This article is protected by copyright. All rights reserved.