Page 9 of 10
Green Chemistry
Please do not adjust margins
DOI: 10.1039/C8GC00852C
Journal Name
ARTICLE
etc.
1
2
diffractometer (Cu-YrU „ A íXñðìñò )• ]v šZꢀ î} ŒꢁvPꢀ }( ñ-80°. For
the precursors, the data were collected in the range of 5-80° with a
•šꢀ‰ Á]ꢂšZ }( ìXìñ£lî}X C}Œ šZꢀ solid catalysts, the data are
collected in the range from 5-80° with a •šꢀ‰ Á]ꢂšZ }( ìXìñ£lî} as
well. FT-IR spectra (KBr pellets) are recorded on a Perkin-Elmer
Spectrometer in the range 4000-400 cm-1. BET surface areas, pore
volumes, and the average pore diameters of the prepared samples
are obtained from N2 (77.3 K) adsorption measurements by using a
Micromeritics ASAP2020M system, in which the samples are
pretreated under vacuum at 150 °C for 4 h. The average pore
diameters are calculated according to Barrett-Joyner-Halenda (BJH)
model in adsorption and desorption period. Thermol gravimetric
analysis (TGA) are performed on NETZSCH-TG209 F3 using flowing
N2. Samples are dried at 120 °C for 24 h prior to analysis, and then
20 mg samples are heated at a heating rate of 10 °C/min from 40 °C
to 1000 °C.
J. J. Bozell, G. R. Petersen, Green Chem., 2010, 12, 539-554.
M. F. Demirbas, Energy Sources Part A: Recovery, Utilization
and Environmental Effects, 2006, 28, 1181-1188.
H. B. Goyal, D. Seal, R. C. Saxena, Renew. Sustain. Energ.
Rev., 2011, 12, 504-517.
D. M. Alonso, J. Q. Bond, J. A. Dumesic, Green Chem., 2010,
12, 1493-1513.
S. Fernando, S. Adhikari, C. Chandrapal, Energy & Fuels,
2006, 20, 1727-1737.
M. Stöcker, Angew. Chem. Int. Ed. 2008, 47, 9200-9211.
3
4
5
6
7
M. J. Climent, A. Corma, S. Iborra, Green Chem., 2014, 16
516-547.
,
8
9
A. Takagaki, S. Nishimura, K. Ebitani, Catalysis Surveys from
Asia, 2012, 16, 164-182.
P. J. Deuss, K. Barta, J. G. de Vries, Catal. Sci. Technol., 2014,
4
10 H. J. Brownlee, C. S. Miner, Ind. Eng. Chem., 1948, 40, 201-
204.
11 K. J. Zeitsch, Amsterdam, Elsevier, 2000.
, 1174-1196.
12 L. C. Kemp, Jr., N. Y. H. H. Gross, Ind. Eng. Chem., 1948, 40
220-227.
13 X. Chang, A. F. Liu, B. Cai, et al., ChemSusChem., 2016, 9, 1-9.
,
Conclusions
14 S. Bhogeswararao, D. Srinivas, J. Catal., 2015, 327, 65-77.
15 S. De, B. Saha, R. Luque, Bioresour. Technol., 2015, 178
108-118.
16 G. W. Huber, S. Iborra and A. Corma, Chem. Rev., 2006, 106
4044-4098.
In summary, a novel iron-based solid catalyst is developed
which can efficiently not only promote the oxidative
condensation of FUR with ethanol under O2 atmosphere, but
also catalyze the hydrogenation of FUR in aliphatic alcohol
,
,
under H2 atmosphere. For the oxidative condensation of FUR 17 X. Tong, Z. Liu, L. Yu, Y. Li, Chem. Commun., 2015, 51, 3674.
18 X. Tong, Z. Liu, J. Hu, S. Liao, Appl. Catal. A: General, 2016,
510, 196-203.
19 Z. Liu, X. Tong, J. Liu, S. Xue, Catal. Sci. Technol., 2016, 6,
with ethanol, an 84.2% conversion of FUR in 82.7% selectivity
of compound was obtained. For the selective hydrogenation
of FUR, a 99.9% conversion of FUR with 93.6% selectivity of the
compound was attained under the suitable conditions. It
2
1214-1221.
20 L. Yu, S. Liao, L. Ning, S. Xue, Z. Liu, X. Tong, ACS Sustainable
Chem. Eng., 2016, , 1894-1898.
4
provides a promising approach for the efficient valorization of
biomass-derived hemicellulose in the biomass transformation.
4
21 L. Ning, S. Liao, X. Liu, L. Yu, X. Zhuang, X. Tong, J. Catal.,
2017, 352, 480-490.
22 X. Tong, L. Yu, X. Luo, X. Zhuang, S. Liao, S. Xue, Catal. Today,
2017, 298, 175-180.
23 F. Menegazzo, T. Fantinel, M. Signoretto, F. Pinna, M.
Manzoli, J. Catal., 2014, 319U òíróì.
Conflicts of interest
24 L. Ning, S. Liao, X. Liu, P. Guo, Z. Zhang, H. Zhang, X. Tong, J.
Catal., 2018, 364, 1-13.
25 H. E. Hoydonckx, W. M. Van Rhijn, W. Van Rhijn, D. E. De
Vos, P. A. Jacobs, Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim, 2012.
In accordance with our policy on Conflicts of interest please
ensure that a conflicts of interest statement is included in your
manuscript here. Please note that this statement is required
for all submitted manuscripts. If no conflicts exist, please state
šZꢁš ^ÇZꢀŒꢀ ꢁŒꢀ v} ꢃ}v(o]ꢃš• š} ꢂꢀꢃoꢁŒꢀ_X
26 R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba, M. L.
Granado, Energy Environ. Sci., 2016, 9, 1144-1189.
27 H. Li, H. Luo, L. Zhuang, W. Dai and M. Qiao, J. Mol. Catal. A:
Chemical, 2003, 203, 267-275.
28 S. P. Lee and Y. W. Chen, Industrial & Engineering Chemistry
Research, 1999, 38, 2548-2556.
29 L. J. Frainier and H. H. Fineberg, United States Pat., 1981, 4,
302-397.
30 L. Baijun, L. Lianhai, W. Bingchun, C. Tianxi and K. Iwatani,
Appl. Catal. A: General, 1998, 171, 117-122.
31 C. Xu, L. Zheng, J. Liu and Z. Huang, Chinese Journal of
Chemistry, 2011, 29, 691-697.
32 H. Li, W. M. Chai, H. S. Luo and H. X. Li, Chinese Journal of
Chemistry, 2006, 24, 1704-1708.
Acknowledgements
This research work is financially supported by Tianjin Research
Program of Application Foundation and Advanced Technology
(No. 17JCYBJC20200) and the State Key Program of the
National Natural Science Foundation of China (21336008).
33 A. S. Gowda, S. Parkin and F. T. Ladipo, Applied
Organometallic Chemistry, 2012, 26, 86-93.
34 L. Liu, P. Concepción, A. Corma, J. Catal., 2016, 340, 1-9.
Notes and references
• Footnotes relating to the main text should appear here. These
might include comments relevant to but not central to the
matter under discussion, limited experimental and spectral data,
and crystallographic data.
§
§§
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 9
Please do not adjust margins