Communication
ChemComm
analysed data. H. L. and A. S. performed DFT calculations.
A. O., H. L., and A. R. O. wrote the text.
The authors thank Prof. Frances Arnold for the plasmids
encoding evolved TrpB, Prof. Peter Schultz for plasmids encod-
ing the orthogonal TrpRS/tRNA pair, and Prof. John Latham for
help with HRMS data collection. This work was supported by
the National Science Foundation (REU 1851844) for A. Ohler
and (20-03956) to A. Offenbacher.
Conflicts of interest
There are no conflicts to declare.
References
1 J. Stubbe and W. A. van der Donk, Chem. Rev., 1998, 98, 705–762.
2 J. L. Dempsey, J. R. Winkler and H. B. Gray, Chem. Rev., 2010, 110,
7024–7039.
3 E. C. Minnihan, D. G. Nocera and J. Stubbe, Acc. Chem. Res., 2013,
46, 2524–2535.
4 J. R. Winkler and H. B. Gray, Q. Rev. Biophys., 2015, 48, 411–420.
5 I. Chaves, R. Pokorny, M. Byrdin, N. Hoang, T. Ritz, K. Brettel,
L.-O. Essen, G. T. J. van der Horst, A. Batschauer and M. Ahmad,
Annu. Rev. Plant Biol., 2011, 62, 335–364.
Fig. 3 EPR spectra of 4F-5HOI/4F-5HOW radicals in solution (A), peptide
(B), and azurin (C). Spectrum in (C) was calculated from background
subtraction (Fig. S17, ESI†).
previously.22 CD and UV spectra demonstrate that these
proteins are folded with comparable structures and thermo-
stabilities to that of W48 (Fig. S14, S15 and Table S4, ESI†). Note
that 4F-5HOW presents a slightly destabilizing effect, though
the protein is still well folded. The corresponding EPR spectra
of the light-induced neutral radical species of Fn-5HOW48 are
presented in Fig. S15 (ESI†). The EPR spectra of W48ꢀ has
previously been characterized by 9.4 and 700 GHz
frequencies.23,24 Compared to W48ꢀ, 4F-5HOW48ꢀ is also
well-resolved but has a distinct EPR line shape (cf. Fig. 3C
and Fig. S15, ESI†).
6 P. J. Hore and H. Mouritsen, Annu. Rev. Biophys., 2016, 45, 299–344.
7 A. Rezhdo, M. Islam, M. Huang and J. A. Van Deventer, Curr. Opin.
Biotechnol., 2019, 60, 168–178.
8 P. Thevenet, Y. Shen, J. Maupetit, F. Guyon, P. Derreumaux and
P. Tuffery, Nucleic Acids Res., 2012, 40, W288–W293.
9 M. R. Seyedsayamdost, S. Y. Reece, D. G. Nocera and J. Stubbe, J. Am.
Chem. Soc., 2006, 128, 1569–1579.
10 P. H. Oyala, K. R. Ravichandran, M. A. Funk, P. A. Stucky, T. A. Stich,
C. L. Drennan, R. D. Britt and J. Stubbe, J. Am. Chem. Soc., 2016, 138,
7951–7964.
11 E. J. Watkins-Dulaney, S. Straathof and F. H. Arnold, ChemBioChem,
2020, 22, 5–16.
12 C.-H. Chen, S. Genapathy, P. M. Fischer and W. C. Chan, Org.
Biomol. Chem., 2014, 48, 9764–9768.
13 K. Boknevitz, J. S. Italia, A. Chatterjee and S.-Y. Liu, Chem. Sci., 2019,
10, 4994–4998.
14 Z. Zhang, L. Alfonta, F. Tian, B. Bursulaya, S. Uryu, D. S. King and
P. G. Schultz, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 8882–8887.
15 P. Addy, S. B. Erickson, J. S. Italia and A. Chatterjee, J. Am. Chem.
Soc., 2017, 139, 11670–11673.
SWV of Fn-5HOW2 peptides and Fn-5HOW48 azurins exhibited
reversible voltammograms with comparable reduction potentials
to that of 5HOIꢀ/5HOI couple (Table S5, ESI†). These data validate
the redox properties of Fn-5HOWs.
In conclusion, we report a facile, chemoenzymatic synthesis
strategy to produce novel, fluorinated 5HOWs on the gram
scale. The light-generated radicals of redox-active Fn-5HOWs,
especially 4F-5HOW, exhibit compelling spectroscopic features
that can be readily distinguished from canonical amino acids.
With these unique spectroscopic and thermodynamic properties
presented herein, Fn-5HOWs have great potential for the study of
Trp-mediated biological PCET and protein engineering of Trp
‘wires’. While 5HOW works well with azurin and other
proteins,14,15 careful control experiments to ensure structural
and functional integrity are required for future applications.
A. O., K. O., K. T., D. M., A. D., C. W., L. D., and A. H.
performed experiments. E. H., A. H., W. A., and A. R. O.
16 S. V. Jovanovic, S. Steenken and M. G. Simic, J. Phys. Chem., 1990, 94,
3583–3588.
17 C. E. Boville, D. K. Romney, P. J. Almhjell, M. Sieben and
F. H. Arnold, J. Org. Chem., 2018, 83, 7447–7452.
18 C. D. Tatko and M. L. Waters, J. Am. Chem. Soc., 2004, 126, 2028–2034.
19 R. Sibert, M. Joscowicz, F. Porcelli, G. Veglia, K. Range and
B. A. Barry, J. Am. Chem. Soc., 2007, 129, 4393–4400.
20 R. Sibert, M. Joscowicz and B. A. Barry, ACS Chem. Biol., 2010, 5,
1157–1168.
21 G. Gilardi, G. Mei, N. Rosato, G. W. Canters and A. Finazzi-Agro,
Biochemistry, 1994, 33, 1425–1432.
22 C. W. Hogue, I. Rasquinha, A. G. Szabo and J. P. MacManus, FEBS J.,
1992, 310, 269–272.
23 H. S. Shafaat, B. S. Leigh, M. J. Tauber and J. E. Kim, J. Am. Chem.
Soc., 2010, 132, 9030–9039.
24 S. Stoll, H. S. Shafaat, J. Krzystek, A. Ozarowski, M. J. Tauber,
J. E. Kim and R. D. Britt, J. Am. Chem. Soc., 2011, 133, 18098–18101.
This journal is © The Royal Society of Chemistry 2021
3110 | Chem. Commun., 2021, 57, 3107–3110