This work was supported by Natural Science Foundation of
China (21074065 and 91027024).
Notes and references
1 For reviews, see: (a) I. W. Hamley, Developments in Block Copolymer
Science and Technology, John Wiley & Sons Ltd, UK, 2004,
pp. 1–125; (b) N. Hadjichristidis, S. Pispas and G. Floudas,
Block Copolymers, John Wiley & Sons Inc, New Jersey, 2003,
pp. 2–172; (c) V. Abetz and P. F. W. Simon, Adv. Polym.
Sci., 2005, 189, 125; (d) S. B. Darling, Prog. Polym. Sci., 2007,
32, 1152; (e) M. R. Bockstaller, R. A. Mickiewicz and
E. L. Thomas, Adv. Mater., 2005, 17, 1331; (f) C. Park,
J. Yoon and E. L. Thomas, Polymer, 2003, 44, 6725; (g) J. Bang,
U. Jeong, D. Y. Ryu, T. P. Russell and C. J. Hawker, Adv. Mater.,
2009, 21, 1.
2 For example, see: (a) L. Zhang and A. Eisenberg, Science, 1995,
268, 1728; (b) B. M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee,
F. S. Bates, D. E. Discher and D. A. Hammer, Science, 1999,
284, 1143; (c) D. E. Discher and A. Eisenberg, Science, 2002,
297, 967; (d) S. Jain and F. S. Bates, Science, 2003, 300, 460;
(e) K. Kita-Tokarczyk, J. Grumelard, T. Haefele and W. Meier,
Polymer, 2005, 46, 3540; (f) M. Antonietti and S. Forster, Adv.
Mater., 2003, 15, 1323; (g) A. Rosler, G. W. M. Vandermeulen and
H. A. Klok, Adv. Drug Delivery Rev., 2001, 53, 95; (h) A. Blanazs,
S. P. Armes and A. J. Ryan, Macromol. Rapid Commun., 2009,
30, 267; (i) B. M. Rossbach, K. Leopold and R. Weberskirch,
Angew. Chem., Int. Ed., 2006, 45, 1309; (j) J. M. Spruell and
C. J. Hawker, Chem. Sci., 2011, 2, 18; (k) C. Tonhauser,
Scheme 3 Preparation of ‘‘Y’’ shaped block copolymer PEG-b-PS via
macromolecular azo-coupling reaction.
esterification between N,N-diethanolaniline and 2-bromoiso-
butyryl bromide. After the azo coupling reaction with diazonium
salts of PEG–NH2, the ‘‘Y’’ shaped amphiphilic block copolymer
was obtained. Similarly, the shift in the GPC trace towards
higher molecular weight was observed, which verified that the
macromolecular azo-coupling reaction occurred (Fig. S5, ESIw).
However, it can be seen from the figure that the unreacted
residue (PS–N(Ph)–PS) exists after the reaction. This result
indicates that the position of the group suitable for the azo-
coupling reaction in the macromolecular chain has a significant
effect on the efficiency of macromolecular azo-coupling reaction.
When the group is at the end of a polymeric chain, it is easy for
the macromolecular diazonium salt to attack it and the azo-
coupling reactions are easily carried out to completion. On the
other hand, because of the steric hindrance, there is some
difficulty for the macromolecular diazonium salt to attack the
positions in the middle part of the macromolecular chain. In this
case, an efficient way to separate the product from the unreacted
mono-blocks will be required.
B. Obermeier, C. Mangold, H. Lowe and H. Frey, Chem. Commun.,
¨
2011, 47, 8964; (l) D. Zehm, A. Laschewsky, P. Heunemann,
´
M. Gradzielski, S. Prevost, H. Liang, J. P. Rabe and J. F. Lutz,
Polym. Chem., 2011, 2, 137.
3 For example, see: (a) J. S. Wang and K. Matyjaszewski, J. Am.
Chem. Soc., 1995, 117, 5614; (b) J. Chiefari, Y. K. Chong, F. Ercole,
J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs,
C. L. Moad, G. Moad, E. Rizzardo and S. H. Thang, Macromolecules,
1998, 31, 5559; (c) S. B. T. Nguyen, L. K. Johnson, R. H. Grubbs and
J. W. Ziller, J. Am. Chem. Soc., 1992, 114, 3974; (d) G. Moad,
E. Rizzardo and D. H. Solomon, Macromolecules, 1982, 15, 909;
(e) M. Szwarc, M. Levy and R. Milkovich, J. Am. Chem. Soc., 1956,
78, 2656.
4 For example, see: (a) H. C. Kolb, M. G. Finn and K. B. Sharpless,
Angew. Chem., Int. Ed., 2001, 40, 2004; (b) C. Barner-Kowollik,
F. E. Du Prez, P. Espeel, C. J. Hawker, T. Junkers, H. Schlaad and
W. Van Camp, Angew. Chem., Int. Ed., 2011, 50, 60; (c) R. K. Iha,
K. L. Wooley, A. M. Nystrom, D. J. Burke, M. J. Kade and
C. J. Hawker, Chem. Rev., 2009, 109, 5620; (d) B. S. Sumerlin and
A. P. Vogt, Macromolecules, 2010, 43, 1.
5 For example, see: (a) V. V. Rostovtsev, L. G. Green, V. V. Fokin
and K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596;
(b) J. A. Opsteen and J. C. M. van Hest, Chem. Commun., 2005, 57.
6 (a) D. R. Wang, G. Ye, X. L. Wang and X. G. Wang, Adv. Mater.,
2011, 23, 1122; (b) D. R. Wang, G. Ye, Y. Zhu and X. G. Wang,
Macromolecules, 2009, 42, 2651; (c) P. C. Che, Y. N. He and
X. G. Wang, Macromolecules, 2005, 38, 8657; (d) H. P. Wang,
Y. N. He, X. L. Tuo and X. G. Wang, Macromolecules, 2004,
37, 135; (e) Y. N. He, X. G. Wang and Q. X. Zhou, Polymer, 2002,
43, 7325; (f) X. G. Wang, J. Kumar, S. K. Tripathy, L. Li, J. Chen
and S. Marturunkakul, Macromolecules, 1997, 30, 219.
In conclusion, we have demonstrated a new approach for the
synthesis of amphiphilic diblock copolymers via macromolecular
azo-coupling reaction between the diazonium salt of aniline-
functionalized PEG and another polymer block with a terminal
group suitable for the azo-coupling reaction. The coupling can be
carried in organic solvents under extremely mild conditions.
Amphiphilic block copolymers with well-defined structures can
be prepared through this approach. The reaction scheme can be
extended to the synthesis of amphiphilic copolymers with other
topographic shapes although the conversion can be affected by
the functional group position.
c
1038 Chem. Commun., 2012, 48, 1036–1038
This journal is The Royal Society of Chemistry 2012