Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Macromolecules
Note
ASSOCIATED CONTENT
■
S
* Supporting Information
Detailed experimental procedures and characterization of new
compounds including MALDI−TOF and NMR spectra (two
files). This material is available free of charge via the Internet at
AUTHOR INFORMATION
■
Corresponding Author
ACKNOWLEDGMENTS
■
This work was generously supported by Kenyon College
Summer Science Scholars Program (J.W.), Kenyon College
Startup Funds, the American Chemical Society’s Petroleum
Research Fund (42880-GB 7)(YDYLG). R.T.M. thanks the
donors of the American Chemical Society’s Petroleum Research
Fund and the Alcoa Foundation for support.
Figure 3. Mark−Houwink−Sakurada plot of linear PLA (blue) and
PLA produced by 1 (green), each overlaid with their respective linear
regressions.
REFERENCES
Scheme 2. Proposed Mechanism for the Ring-Expansion
Polymerization of Lactide by 1
■
(1) Corey, E. J.; Cheng, X. The Logic of Chemical Synthesis: John
Wiley & Sons: New York, 1995.
(2) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418−2421.
(3) Qiu, S. R.; Orme, C. A. Chem. Rev. 2008, 108, 4784−4822.
(4) Mueller, A. H. E.; Matyjaszewski, K. Controlled And Living
Polymerizations: Methods And Materials: Wiley-VCH: Weinheim,
Germany, 2009.
(5) Kramer, J. W.; Treitler, D. S.; Dunn, E. W.; Castro, P. M.;
Roisnel, T.; Thomas, C. M.; Coates, G. W. J. Am. Chem. Soc. 2009,
131, 16042−16044.
(6) Semlyen, J. A., In Cyclic polymers, 2nd ed.; Kluwer Academic
Publishers: Dordrecht, The Netherlands, 2000.
(7) Kricheldorf, H. R. J. Polym. Sci., Part A: Polym. Chem. 2010, 48,
251−284.
(8) Boydston, A. J.; Xia, Y.; Kornfield, J. A.; Gorodetskaya, I. A.;
Grubbs, R. H. J. Am. Chem. Soc. 2008, 130, 12775−12782.
(9) Bielawski, C. W.; Benitez, D.; Grubbs, R. H. Science 2002, 297,
2041−2044.
(10) Hoskins, J. N.; Grayson, S. M. Polym. Chem. 2011, 2, 289−299.
(11) Chisholm, M. H.; Gallucci, J. C.; Yin, H. Proc. Natl. Acad. Sci.
U.S.A. 2006, 103, 15315−15320.
influenced by reaction temperature, as might be expected from
the proposed mechanism.
(12) Chisholm, M. H.; Gallucci, J. C.; Yin, H. Dalton Trans. 2007,
4811−4821.
CONCLUSION
(13) Chisholm, M. H. J. Organomet. Chem. 2008, 693, 808−818.
(14) Culkin, D. A.; Jeong, W.; Csihony, S.; Gomez, E. D.; Balsara, N.
P.; Hedrick, J. L.; Waymouth, R. M. Angew. Chem., Int. Ed. 2007, 46,
2627−2630.
(15) Jeong, W.; Shin, E. J.; Culkin, D. A.; Hedrick, J. L.; Waymouth,
R. M. J. Am. Chem. Soc. 2009, 131, 4884−4891.
(16) Kricheldorf, H. R. J. Polym. Sci., Part A: Polym. Chem. 2004, 42,
4723−4742.
(17) Kricheldorf, H. R.; Lomadze, N.; Schwarz, G. Macromolecules
2008, 41, 7812−7816.
(18) Voronkov, M. G.; Baryshok, V. P. J. Organomet. Chem. 1982,
239, 199−249.
(19) Verkade, J. G. Acc. Chem. Res. 1993, 26, 483−489.
(20) Verkade, J. G. Coord. Chem. Rev. 1994, 137, 233−295.
(21) Schrock, R. R. Acc. Chem. Res. 1997, 30, 9−16.
(22) Kim, J. H.; Yoon, S.; Mun, S. D.; Kim, S. H.; Lee, J.; Chung, Y.;
Kwon, S. H.; Lee, K. S.; Lee, C.; Kim, Y. J. Org. Chem. 2011, 696,
1729−1735.
(23) Jyothish, K.; Zhang, W. Angew. Chem., Int. Ed. 2011, 50, 3435−
3438.
(24) Jevric, M.; Zheng, T.; Meher, N. K.; Fettinger, J. C.; Mascal, M.
Angew. Chem., Int. Ed. 2011, 50, 717−719.
(25) Phukan, A. K.; Guha, A. K. Inorg. Chem. 2011, 50, 1361−1367.
■
We presented a new catalyst for the ring-expansion polymer-
ization of lactide to cyclic poly(lactic acid). The pseudoaluma-
trane complex contains a putative initiating group tethered to a
permanently bound ligand, analogous to Grubbs’ catalyst for
ring-expansion polymerization of cyclooctene. Our catalyst is
active for polymerization of lactide in solution and in the melt
and shows a linear increase in conversion with either catalyst
loading or polymerization time under either polymerization
condition, consistent with a well-defined active site. The
expected trends are also observed for molecular weight and
intrinsic viscosity. The polymer produced displays physical
characteristics consistent with a cyclic architecture when
compared to linear material of equivalent molecular weights
including longer elution times when subjected to size exclusion
chromatography and lower intrinsic viscosity. This catalyst is a
valuable addition to an ever-expanding body of methods for the
control of macromolecular structure.
1120
dx.doi.org/10.1021/ma201960p | Macromolecules 2012, 45, 1118−1121