10.1002/chem.201904175
Chemistry - A European Journal
RESEARCH ARTICLE
compared to the DMSO control) of 51 % fingerprints of reference
compounds, i.e., with known biological activity, to generate target
hypotheses. Interestingly, the morphological profile of 4a
Keywords: Sulfonamides • Branching Pathway • Folding
Pathway • Cell Painting • Mitotic Inhibitors
displayed similarity to tubulin-acting agents (fenbendazole[29]
–
[1]
a) J. W. Scannell, A. Blanckley, H. Boldon, B. Warrington, Nat. Rev. Drug.
Discov. 2012, 11, 191-200; b) E. A. Ilardi, E. Vitaku, J. T. Njardarson, J.
Med. Chem. 2014, 57, 2832-42; c) A. Mullard, Nat. Rev. Drug. Discov.
2016, 15, 669-69; d) M. Garcia-Castro, S. Zimmermann, M. G. Sankar,
K. Kumar, Angew. Chem. Int. Ed. 2016, 55, 7586-605; e) K. Smietana,
D. Quigley, B. V. d. Vyver, M. Møller, Nat. Rev. Drug Discov. 2019.
a) S. L. Schreiber, Science (New York, N.Y.) 2000, 287, 1964-9; b) M. D.
Burke, S. L. Schreiber, Angew. Chem. Int. Ed. 2004, 43, 46-58.
Selected reports: a) P. R. Hanson, D. A. Probst, R. E. Robinson, M. Yau,
Tet. Lett. 1999, 40, 4761-64; b) T. Ji, Y. Wang, M. Wang, B. Niu, P. Xie,
C. U. Pittman, A. Zhou, ACS Combinatorial Science 2013, 15, 595-600;
c) J. K. Loh, N. Asad, T. B. Samarakoon, P. R. Hanson, J. Org. Chem.
2015, 80, 9926-41; d) J. Lacour, S. L. Kidd, A. Guarnieri-Ibáñez, C.
Besnard, D. R. Spring, F. Medina, Chem. Sci. 2017, 8, 5713-20; e) J. K.
Laha, S. Sharma, S. Kirar, U. C. Banerjee, J. Org. Chem. 2017, 82, 9350-
59; f) R. R. Liu, J. P. Hu, J. J. Hong, C. J. Lu, J. R. Gao, Y. X. Jia, Chem.
Sci. 2017, 8, 2811-15; g) M. Quan, X. Wang, L. Wu, I. D. Gridnev, G.
Yang, W. Zhang, Nat. Commun. 2018, 9, 2258.
74% similarity, tubulexin A[30] – 84% similarity), (Figure 1b and
Figure S4a-b), whereas the morphological profile of 5b was
similar to an inhibitor of the mitotic Polo-like kinase 1[31] (PLK1 –
56 % similarity, Figure S5 and Figure S4c).
Both, tubulin and PLK1 have essential function during mitosis.
Therefore, we monitored the growth of U2OS in presence of 4a
and 5b cells by means of real-time live-cell analysis (Figure 1a).
Both compounds reduced cell growth dose-dependently with IC50
values of 7.8 ± 1.6 µM (4a) and 6.0 ± 0.4 µM (5b) (Figure 1b and
Movies S1-S3). Inspection of cell morphology revealed the
accumulation of round cells (Figure S6) with mitotic spindles
(Figure 1e) that is indicative of mitotic arrest. Arrest in mitosis was
confirmed using phospho-histone 3 staining that revealed
increase in the fraction of mitotic cells from 5.2 ± 2.4 % (DMSO-
treated cells) to 62.5 ± 15.1 % and 19.8 ± 6.9 % in the presence
of 10 µM 4a and 5b, respectively (Figure 1f and Figure S6-7).
Tubulin polymerization is amenable to modulation by small
molecules[32] and interference with microtubule dynamics leads to
mitotic arrest. As the CPA revealed similarity of the fingerprints to
the tubulin-targeting agents fenbendazole and tubulexin A (Figure
1b), we analyzed the influence of benzosulfonamides 4a and 5b
on in vitro tubulin polymerization. Compound 4a strongly inhibited
tubulin polymerization at 20 µM, whereas compound 5b was less
potent (Figure 1g). These results confirm the CPA-generated
mode-of-action hypothesis and identified sulfonamides 4a and 5b
as novel microtubule-targeting agents. Notably, sulfonamide
class of small molecules is not typically known for anti-mitotic
activities and therefore CPA was instrumental to offer an
unexpected biological annotation to benzosulfonamides.
In conclusion, a novel scaffold diversity synthesis approach
employing a branching-folding pathway strategy is presented to
offer access to biologically relevant yet under-explored cyclic
benzosulfonamides. Different annulation reactions of common
substrates formed the core of branching pathway, and a
hydrogenolytic ring-expansion strategy was the key for folding-
route. Cell painting assay was instrumental in identifying hits from
this non-natural class of small molecules and unravelling their
unexpected anti-mitotic activity and tubulin inhibition. We believe
this approach will find further applications to reach out to novel
chemical and biological space and to help advance discovery
research.
[2]
[3]
[4]
[5]
Reviews: a) V. A. Rassadin, D. S. Grosheva, A. A. Tomashevskii, V. V.
Sokolov, Chem. Heterocycl. Comp. 2013, 49, 39-65; b) K. C. Majumdar,
S. Mondal, Chem. Rev. 2011, 111, 7749-73; c) S. Debnath, S. Mondal,
Eur. J. Org. Chem. 2018, 933-56.
For some recent reports, see: a) P. Dauban, R. H. Dodd, Org. Lett. 2000,
2, 2327-29; b) F. N. Figueroa, A. A. Heredia, A. B. Peñéñory, D.
Sampedro, J. E. Argüello, G. Oksdath-Mansilla, J. Org. Chem. 2019, 84,
3871-80; c) H. Wang, T. Jiang, M. H. Xu, J. Am. Chem. Soc. 2013, 135,
971-74; d) D. Y. Zhong, D. Wu, Y. Zhang, Z. W. Lu, M. Usman, W. Liu,
X. Q. Lu, W. B. Liu, Org. Lett. 2019, 21, 5808-12; e) L. Kiefer, T.
Gorojankina, P. Dauban, H. Faure, M. Ruat, R. H. Dodd, Bioorg. Med.
Chem. Lett. 2010, 20, 7483-87.
[6]
G. Callebaut, T. Meiresonne, N. De Kimpe, S. Mangelinckx, Chem. Rev.
2014, 114, 7954-8015.
[7]
[8]
S. Zhang, L. Li, L. Xin, W. Liu, K. Xu, J. Org. Chem. 2017, 82, 2399-406.
X. Y. Chen, R. C. Lin, S. Ye, Chem. Commun. (Camb.) 2012, 48, 1317-
19.
[9]
a) M. M. Heravi, T. Ahmadi, M. Ghavidel, B. Heidari, H. Hamidi, RSC Adv.
2015, 5, 101999-2075; b) K. C. Nicolaou, S. A. Snyder, T. Montagnon,
G. Vassilikogiannakis, Angew. Chem. Int. Ed. 2002, 41, 1668-98; c) V.
Eschenbrenner-Lux, K. Kumar, H. Waldmann, Angew. Chem. Int. Ed.
2014, 53, 11146-57.
[10] H.-w. Cao, R. A. Abramovich, L. R. Stowers, Heterocycles 1984, 22, 671.
[11] A. Padwa, W. Dent, J. Org. Chem. 1987, 52, 235-44.
[12] Supplementary crystallographic data for this paper can be found under
CCDC 1910465 and CCDC 1910510 (syn-10 and 15a, respectively)
from The Cambridge Crystallographic Data Centre.
[13] N. Kesava-Reddy, C. Golz, C. Strohmann, K. Kumar, Chem. Eur. J. 2016,
22, 18373-77.
[14] B. M. Trost, C.-I. J. Hung, M. J. Scharf, Angew. Chem. Int. Ed. 2018, 57,
11408-12.
[15] X. Li, M. Lu, Y. Dong, W. B. Wu, Q. Q. Qian, J. X. Ye, D. J. Dixon, Nat.
Commun. 2014, 5.
Acknowledgements
[16] a) Y. Y. Liu, S. J. Han, W. B. Liu, B. M. Stoltz, Acc. Chem. Res. 2015, 48,
740-51; b) B. M. Trost, C. H. Jiang, Synthesis 2006, 369-96; c) P. W. Xu,
J. S. Yu, C. Chen, Z. Y. Cao, F. Zhou, J. Zhou, ACS Catal. 2019, 9, 1820-
82.
This research was funded in parts by the Max Planck Society and
the Innovative Medicines Initiative Joint Undertaking under the
grant agreement (Nr. 115489), resources of which are composed
of financial contribution from the European Union's Seventh
Framework Programme (FP7/2007-2013) and EFPIA companies’
in-kind contribution. Authors are grateful to Prof. H. Waldmann for
his kind support and encouragement.
[17] a) R. A. Bauer, T. A. Wenderski, D. S. Tan, Nat. Chem. Biol. 2013, 9, 21-
29; b) B. Rao, J. Tang, Y. Wei, X. Zeng, Chem. As. J. 2016, 11, 991-95;
c) T. Guney, T. A. Wenderski, M. W. Boudreau, D. S. Tan, Chem. Eur. J.
2018, 24, 13150-57; d) K. Murai, T. Kobayashi, M. Miyoshi, H. Fujioka,
Org. Lett. 2018, 20, 2333-37; e) T. C. Stephens, A. Lawer, T. French, W.
P. Unsworth, Chem. Eur. J. 2018, 24, 13947-53; f) Y. Choi, H. Kim, S. B.
Park, Chem. Sci. 2019, 10, 569-75.
This article is protected by copyright. All rights reserved.