Inorganic Chemistry
Article
(19) Darensbourg, D. J.; Chung, W.-C. Availability of Other Aliphatic
Polycarbonates Derived from Geometric Isomers of Butene Oxide and
Carbon Dioxide Coupling Reactions. Macromolecules 2014, 47, 4943−
4948.
(20) Castro-Osma, J. A.; Lamb, K. J.; North, M. Cr(salophen)
Complex Catalyzed Cyclic Carbonate Synthesis at Ambient Temper-
ature and Pressure. ACS Catal. 2016, 6, 5012−5025.
Technology Information with supercomputing resources
including technical support (KSC-2017-C2-0019). Y.K. ex-
presses thanks for the financial support from the research year of
Chungbuk National University in 2018.
REFERENCES
■
́
́
(21) Herve, A.-C.; Yaouanc, J.-J.; Clement, J.-C.; des Abbayes, H.;
Toupet, L. Hemilability of the Primary Amine−Metal Bond in
Polyamine-(Group 6) Metal Carbonyl Complexes. J. Organomet.
Chem. 2002, 664, 214−222.
(1) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Ku
̈
hn,
F. E. Transformation of Carbon Dioxide with Homogeneous
Transition-Metal Catalysts: a Molecular Solution to a Global
Challenge? Angew. Chem., Int. Ed. 2011, 50, 8510−8537.
(2) Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the
Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and
Fuels. Technological Use of CO2. Chem. Rev. 2014, 114, 1709−1742.
(3) Maeda, C.; Miyazaki, Y.; Ema, T. Recent Progress in Catalytic
Conversions of Carbon Dioxide. Catal. Sci. Technol. 2014, 4, 1482−
1497.
(22) Shiu, K.-B.; Wang, S.-L.; Liao, F.-L. Organotransition-metal
Complexes of Multidentate Ligands: XVI. On the Nature of the Sigma-
Donicity of the Saturated Nitrogen Ligands; Chelate-assisted
Weakening of the α-N−H Bond: Synthesis, and Spectral and Structural
Study of [Mo(N−N)(CO)4] (N−N = Saturated Nitrogen Bidentate
Ligands). J. Organomet. Chem. 1991, 420, 207−215.
(23) Powell, J.; Lough, A.; Raso, M. Synthesis, Structure and Relative
Hydrolytic Stability of cis-[PtCl2L] and cis-[W(CO)4L] Where L is the
Bidentate Triaminophosphine Ligand [MeNCH2CH2N(Me)PN(Me)-
CH2]2. J. Chem. Soc., Dalton Trans. 1994, 1571−1576.
(24) Connor, J. A.; Lloyd, J. P. Chromium(0) Complexes of Sterically
Hindered vic-Diamines. J. Chem. Soc. A 1970, 3237−3242.
̃
(25) Kromer, L.; Coelho, A. C.; Bento, I.; Marques, A. R.; Romao, C.
(4) Peppel, W. Preparation and Properties of the Alkylene Carbonates.
Ind. Eng. Chem. 1958, 50, 767−770.
(5) Martín, C.; Fiorani, G.; Kleij, A. W. Recent Advances in the
Catalytic Preparation of Cyclic Organic Carbonates. ACS Catal. 2015,
5, 1353−1370.
(6) Comerford, J. W.; Ingram, I. D. V.; North, M.; Wu, X. Sustainable
Metal-Based Catalysts for the Synthesis of Cyclic Carbonates
Containing Five-Membered Rings. Green Chem. 2015, 17, 1966−1987.
(7) North, M.; Pasquale, R. Mechanism of Cyclic Carbonate Synthesis
from Epoxides and CO2. Angew. Chem., Int. Ed. 2009, 48, 2946−2948.
(8) Miao, C.-X.; Wang, J.-Q.; Wu, Y.; Du, Y.; He, L.-N. Bifunctional
Metal-Salen Complexes as Efficient Catalysts for the Fixation of CO2
with Epoxides under Solvent-Free Conditions. ChemSusChem 2008, 1,
236−241.
C. The Effect of Specific Modifications of the Amine Ligands on the
Solubility, Stability, CO Release to Myoglobin and Whole Blood, Cell
Toxicity and Haemolytic Index of [Mo(CO)4(NR3)2] Complexes. J.
Organomet. Chem. 2014, 760, 89−100.
(26) King, R. B.; Fronzaglia, A. Organometallic Chemistry of the
Transition Metals. XV. New Olefinic and Acetylenic Derivatives of
Tungsten. Inorg. Chem. 1966, 5, 1837−1846.
(27) Szymanska-Buzar, T. Photochemical Synthesis of the Tungsten-
(II) Complex [WCl2(CO)3(bipy)]. J. Organomet. Chem. 1989, 375,
85−89.
́
(9) Melendez, J.; North, M.; Villuendas, P. One-Component Catalysts
for Cyclic Carbonate Synthesis. Chem. Commun. 2009, 2577−2579.
(10) Tian, D.; Liu, B.; Gan, Q.; Li, H.; Darensbourg, D. J. Formation of
Cyclic Carbonates from Carbon Dioxide and Epoxides Coupling
Reactions Efficiently Catalyzed by Robust, Recyclable One-Compo-
nent Aluminum-Salen Complexes. ACS Catal. 2012, 2, 2029−2035.
(11) Luo, R.; Zhou, X.; Zhang, W.; Liang, Z.; Jiang, J.; Ji, H. New Bi-
functional Zinc Catalysts Based on Robust and Easy-to-Handle N-
Chelating Ligands for the Synthesis of Cyclic Carbonates from
Epoxides and CO2 under Mild Conditions. Green Chem. 2014, 16,
4179−4189.
(28) Tezuka, K.; Komatsu, K.; Haba, O. The Anionic Ring-Opening
Polymerization of Five-Membered Cyclic Carbonates Fused to the
Cyclohexene Ring. Polym. J. 2013, 45, 1183−1187.
(29) Buttner, H.; Steinbauer, J.; Werner, T. Synthesis of Cyclic
̈
Carbonates from Epoxides and Carbon Dioxide by Using Bifunctional
One-component Phosphorus-based Organocatalysts. ChemSusChem
2015, 8, 2655−2669.
(30) Okazaki, M.; Suzuki, E.; Miyajima, N.; Tobita, H.; Ogino, H.
Facile Isomerization of a Tungsten Silyl Complex to a Base-Stabilized
Silyene Complex via 1,2-Migration of an Aryl Group. Organometallics
2003, 22, 4633−4635.
(12) Ren, W.-M.; Liu, Y.; Lu, X.-B. Bifunctional Aluminum Catalyst
for CO2 Fixation: Regioselective Ring Opening of Three-Membered
Heterocyclic Compounds. J. Org. Chem. 2014, 79, 9771−9777.
(13) Castro-Osma, J. A.; North, M.; Wu, X. Development of a Halide-
Free Aluminium-Based Catalyst for the Synthesis of Cyclic Carbonates
from Epoxides and Carbon Dioxide. Chem. - Eur. J. 2014, 20, 15005−
15008.
(31) Buffin, B. P.; Richmond, T. G. Coordination Chemistry of
Chelating Nitrogen Ligands with Tungsten Carbonyl Nitriles.
Polyhedron 1990, 9, 2887−2893.
(32) Dreisch, K.; Andersson, C.; Stalhandske, C. Synthesis of
MO2Cl2(N,N,N′,N′-tetramethylethylenediamine) (M = Mo and W)
and Crystal structure of WO2Cl2(N,N,N′,N′-tetramethylethylenedi-
amine)−an Unprecedented Coordination Geometry in the WO2Cl2
Core. Polyhedron 1992, 11, 2143−2150.
(33) Kozuch, S.; Shaik, S. How to Conceptualize Catalytic Cycles?
The Energetic Span Model. Acc. Chem. Res. 2011, 44, 101−110.
(34) Kozuch, S.; Shaik, S. A Combined Kinetic−Quantum
Mechanical Model for Assessment of Catalytic Cycle: Application to
Cross-Coupling and Heck Reactions. J. Am. Chem. Soc. 2006, 128,
3355−3365.
(14) Castro-Osma, J. A.; North, M.; Offermans, W. K.; Leitner, W.;
Muller, T. E. Unprecedented Carbonato Intermediates in Cyclic
̈
Carbonate Synthesis Catalysed by Bimetallic Aluminium(Salen)
Complexes. ChemSusChem 2016, 9, 791−794.
(15) Faber, G. L.; Walsh, T. D.; Dobson, G. R. Octahedral Metal
Carbonyls. IX.1 Kinetics of the Reaction of N,N,N’,N’-Tetramethyle-
thylenediaminechromium Tetracarbonyl with Triethyl Phosphite. J.
Am. Chem. Soc. 1968, 90, 4178−4179.
(16) Dobson, G. R.; Moradi-Araghi, A. Octahedral Metal Carbonyls.
XLV. *Kinetics and Mechanism of Ligand Exchange in Tungsten
Carbonyl Complexes Containing Chelating Ligands Bonding Through
Nitrogen. Inorg. Chim. Acta 1978, 31, 263−269.
(17) Cho, W.; Shin, M. S.; Hwang, S.; Kim, H.; Kim, M.; Kim, J. G.;
Kim, Y. Tertiary Amines: A New Class of Highly Efficient Organo-
catalysts for CO2 Fixations. J. Ind. Eng. Chem. 2016, 44, 210−215.
(18) Ramidi, P.; Sullivan, S. Z.; Gartia, Y.; Munshi, P.; Griffin, W. O.;
Darsey, J. A.; Biswas, A.; Shaikh, A. U.; Ghosh, A. Catalytic Cyclic
Carbonate Synthesis Using Epoxide and Carbon Dioxide: Combined
Catalytic Effect of Both Cation and Anion of an Ionic CrV(O) Amido
Macrocyclic Complex. Ind. Eng. Chem. Res. 2011, 50, 7800−7807.
J
Inorg. Chem. XXXX, XXX, XXX−XXX