10.1002/chem.201904344
Chemistry - A European Journal
COMMUNICATION
thrice, methanol (40 mL) thrice, methylene chloride (40 mL) thrice, and
dried under vacuum.
[2]
a) F. Haber, R. Le Rossignol, Z. Elektrochem. Angew. Phys. Chem.1913,
19, 53-72; b) T. Kandemir, M. E. Schuster, A. Senyshyn, M. Behrens, R.
Schlögl, Angew. Chem. Int. Ed. 2013, 52, 12723-12726.
For the preparation of nonhollow MFeSN (Also, refer to Figure S3 in the
SI), tetraiodo-di(Fe-salen) building block was prepared as follows. In a
flame-dried 250 mL Schlenk flask, tetraiodo-di(metal free salen) (1.0 g,
0.78 mmol) and chloroform (70 mL) were added. After FeCl3 (0.28 g, 1.7
mmol) in ethanol (70 mL) and triethylamine (0.48 mL) were added, the
reaction mixture was stirred at 80 oC for 2 h. After being cooled to room
temperature, the reaction mixture was stirred for 2 h. After solvent was
evaporated, the tetraiodo-di(Fe-salen) (deep violet solid) was separated
through recrystallization in chloroform. Characterization data of tetraiodo-
di(Fe-salen) building block: Yield: 75% HR-MS: Calc. [M]+,
C50H50N4O4I4Cl2Fe2, 1459.8087, Obs. 1459.8075. NMR spectra could not
be obtained due to the paramagnetic nature. For the preparation of
nonhollow MFeSN, (PPh3)2PdCl2 (8.4 mg, 12 µmol), CuI (2.3 mg, 12 µmol),
triethylamine (20 mL), and THF (10 mL) were added to a flame-dried 50
mL Schlenk flask and the reaction mixture was sonicated for 1 h at room
temperature. After tetraiodo-di(Fe-salen) building block (0.18 g, 0.12
mmol) and 1,4-diethynylbenzene (30 mg, 0.24 mmol) were added, the
reaction mixture was stirred at 80 oC for 2 days. After being cooled to room
temperature, the solid was separated by centrifugation, washed with
acetone (40 mL) thrice, methanol (40 mL) thrice, and methylene chloride
(40 mL) thrice, and dried under vacuum.
[3]
[4]
I. Bauer, H. -J. Knölker, Chem. Rev. 2015, 115, 3170-3387.
Reviews: a) Q. Liu, L. Wu, R. Jackstell, M. Beller, Nature Commun. 2015,
6, 5933-5948; b) T. Sakakura, J. -C. Choi, H. Yasuda, Chem. Rev. 2007,
107, 2365-2387.
[5]
[6]
Recent reviews: a) A. J. Kamphuis, F. Picchioni, P. P. Pescarmona,
Green Chem. 2019, 21, 406-448; b) J. W. Comerford, I. D. V. Ingram, M.
North, X. Wu, Green Chem. 2015, 17, 1966-1987.
a) J. E. Dengler M. W. Lehenmeier, S. Klaus, C. E. Anderson, E.
Herdtweck, B. Rieger, Eur. J. Inorg. Chem. 2011, 336-343; b) M. A.
Fuchs, T. A. Zevaco, E. Ember, O. Walter, I. Held, E. Dinjus, M. Döring,
Dalton Trans. 2013, 42, 5322-5329; c) C. Sheng, L. Qiao, Y. Qin, X.
Wang, F. Wang, Polyhedron 2014, 74, 139-133; d) A. Buonerba, A. D.
Nisi, A. Grassi, S. Milione, C. Capacchione, S. Vagin, B. Rieger, Catal.
Sci. Technol. 2015, 5, 118-123; e) H. Büttner, C. Grimmer, J. Steinbauer,
T. Werner, ACS Sustainable Chem. Eng. 2016, 4, 4805-4814; f) D.
Alhashmialameer, J. Collins, K. Hattenhauer, F. M. Kerton, Catal. Sci.
Technol. 2016, 6, 5364-5378; g) F. M. Al-Qaisi, M. Nieger, M. L. Kemell,
T. J. Repo, ChemistrySelect 2016, 3, 545-548; h) F. D. Monica, S. V. C.
Vummaleti, A. Buonerba, A. D. Nisi, M. Monari, S. Milione, A. Grassi, L.
Cavallo, C. Capacchione, Adv. Synth. Catal. 2016, 358, 3231-3243; i) I.
Sinha, Y. Lee, C. Bae, S. Tussupbayev, Y. Lee, M. -S. Seo, J. Kim, M. -
H. Baik, Y. Lee, H. Kim, Catal. Sci. Technol. 2017, 7, 4375-4278; j) F.
Chen, N. Liu, B. Dai, ACS Sustainable Chem. Eng. 2017, 5, 9065-9075;
k) M. Cozzolino, V. Leo, C. Tedesco, M. Mazzeo, M. Lamberti, Dalton
Trans. 2018, 47, 13229-13238; l) E. Fazekas, G. S. Nichol, M. P. Shaver,
J. A. Garden, Dalton Trans. 2018, 47, 13106-13112.
Procedures for catalytic reactions
After H-MFeSN (0.996 mmol salens/g, 10.8 mg for 0.0250 mol%, 21.5 mg
for 0.0500 mol%), tetrabutylammonium bromide (TBABr, 13.8 mg for
0.0250 mol% H-MFeSN, 27.6 mg for 0.0550 mol% H-MFeSN), and
epoxide (42.9 mmol) were added to an autoclave, CO2 (20 bar) was
charged at room temperature. The autoclave was heated at the given
temperature for the given reaction time. After being cooled to room
temperature, excess CO2 was discharged. The reaction mixture was
transferred to a 50 mL Falcon tube using methylene chloride. The catalyst
was recovered by centrifugation. After solvent being evaporated, cyclic
carbonates were isolated by column chromatograph and characterized by
1H and 13C NMR studies.[6-8] (Figure S4 in the SI) For the recyclability tests,
HMFeSN (21.5 mg, 0.0500 mol%), TBABr (27.6 mg), and PO (3.00 mL,
42.9 mmol) were added to an autoclave. After CO2 (20 bar) being charged,
the autoclave was heated at 100 oC for 12 h. After being cooled to room
temperature, excess CO2 was discharged. The mixture was transferred to
a 50 mL Falcon tube using methylene chloride. The catalyst was recovered
by centrifugation, washed with methylene chloride, acetone, and methanol,
dried under vacuum, and used for the next run.
[7]
[8]
[9]
S. Verma, M. Nazish, R. I. Kureshy, N. H. Kahn, Sustainable Energy
Fuels, 2018, 2, 1312-1322.
E. Y. Seong, J. H. Kim, N. H. Kim, K. -H. Ahn, E. J. Kang, ChemSusChem
2019, 12, 409-415.
a) N. Chaoui, M. Trunk, R. Dawson, J. Schmidt, A. Thomas, Chem. Soc.
Rev. 2017, 46, 3302-3321; b) S. Das, P. Heasman, T. Ben, S. Qiu, Chem.
Rev. 2017, 117, 1515-1563; c) L. Tan, B. Tan, Chem. Soc. Rev. 2017,
46, 3322-3356; d) Y. Xu, S. Jin, H. Xu, A. Nagai, D. Jiang, Chem. Soc.
Rev. 2013, 42, 8012-8031; e) F. Vilela, K. Zhang, M. Antonietti, Energy
Environ. Sci. 2012, 5, 7819-7832; f) R. Dawson, A. I. Cooper, D. J.
Adams, Prog. Poly. Sci. 2012, 37, 530-563; g) N. B. McKeown, P. M.
Budd, Chem. Soc. Rev. 2006, 35, 675-683
[10] a) J. Chun, S. Kang, N. Kang, S. M. Lee, H. J. Kim, S. U. Son, J. Mater.
Chem. A 2013, 1, 5517-5523; b) M. H. Kim, T. Song, U. R. Seo, J. E.
Park, K. Cho, S. M. Lee, H. J. Kim, Y. -J. Ko, Y. K. Chung, S. U. Son, J.
Mater. Chem. A 2017, 5, 23612-23619.
[11] J. Yoo, N. Park, J. H. Park, J. H. Park, S. Kang, S. M. Lee, H. J. Kim, H.
Jo, J. -G. Park, S. U. Son, ACS Catal. 2015, 5, 350-355.
Acknowledgements
[12] a) J. Chun, S. Kang, N. Park, E. J. Park, X. Jin, K. -D. Kim, H. O. Seo, S.
M. Lee, H. J. Kim, W. H. Kwon, Y. -K. Park, J. M. Kim, Y. D. Kim, S. U.
Son, J. Am. Chem. Soc. 2014, 136, 6786-6789; b) N. Kang, J. H. Park,
M. Jin, N. Park, S. M. Lee, H. J. Kim, J. M. Kim, S. U. Son, J. Am. Chem.
Soc. 2013, 135, 19115-19118.
This work was supported by “Next Generation Carbon Upcycling
Project” (Project No. 2017M1A2A2042517) through the National
Research Foundation (NRF) funded by the Ministry of Science
and ICT, Republic of Korea.
[13] a) C. W. Kang, J. H. Ko, S. M. Lee, H. J. Kim, Y. -J. Ko, S. U. Son, J.
Mater. Chem. A 2019, 7, 7859-7866; b) S. J. Choi, E. H. Choi, C. Song,
Y. -J. Ko, S. M. Lee, H. J. Kim, H. -Y. Jang, S. U. Son, ACS Macro Lett.
2019, 8, 687-693.
Conflict of interest
[14] a) K. Cho, J. Yoo, H. -W. Noh, S. M. Lee, H. J. Kim, Y. -J. Ko, H. -Y. Jang,
S. U. Son, J. Mater. Chem. A 2017, 5, 8922-8926; b) J. H. Ko, N. Kang,
N. Park, H. -W. Shin, S. Kang, S. M. Lee, H. J. Kim, T. K. Ahn, S. U. Son,
ACS Macro Lett. 2015, 4, 669-672.
The authors declare no conflict of interest.
Keywords: microporous organic network • iron • catalyst •
[15] a) S. Elmas, T. J. Macdonald, W. Skinner, M. Andersson, T. Nann,
Polymers 2019, 11, 110; b) F. Wei, J. Liu, Y. -N. Zhu, X. -S. Wang, C. -
Y. Cao, W. -G. Song, Sci. China Chem. 2017, 60, 1236-1242.
[16] Z. Li, S. Wu, H. Ding, H. Lu, J. Liu, Q. Huo, J. Guan, Q. Kan, New J.
Chem. 2013, 37, 4220-4229.
carbon dioxide • cyclic carbonate
[1]
J. E. Huheey, E. A. Keiter, R. L. Keiter, O. K. Medhi, in Inorganic
Chemistry: Principles of Structure and Reactivity, Pearson Education:
Upper Saddle River, NJ, 2006.
This article is protected by copyright. All rights reserved.