10.1002/anie.202102319
Angewandte Chemie International Edition
RESEARCH ARTICLE
non-invasive information about the surface functionalizations and
the modifications thereof.
acknowledged. M.M. acknowledges support from the 111 project
(Grant No. 90002-18011002).
As the nanohole arrays can be created with a variety of
plasmonically active materials and only a tiny area needs to be
nano-patterned, it is anticipated that such monitoring tags might
become useful for process monitoring in a variety of industry-
relevant applications. As an example, we foresee this method to
be used to miniaturize currently existing systems for reaction
screenings in which the chemical substrates are immobilized on
solid supports (e.g. on resins). Reaction screenings that aim to
find pharmaceutical leads require a vast number of possible
candidate substances. Such systems include the combinatorial
synthesis of peptides and other biologically active molecules on
solid supports.[44] Miniaturization of these systems would mean
using a single molecular monolayer on a Au surface instead of the
substrate being immobilized on resin beads. The need for less
resources with possibly lower required reaction volumes could be
an advantage of such a miniaturized system. If plasmonic
surfaces are integrated in a microfluidic device and if the
synthesized molecules can be released in a controlled manner, it
could be linked to other lab-on-a-chip modules such as biological
assays to assess the binding to a protein target in an integrated
system, for instance. The herein reported method would greatly
benefit from further developments to be viable for such an
application. Firstly, the FE produced by the presented
nanostructures is only strong enough in a certain energy range of
the spectrum and does not cover the parts of the spectrum above
Keywords: Click chemistry • Field enhancement • Raman
spectroscopy • Self-assembled monolayers • Solid-phase
synthesis
[1]
[2]
G. Zaupa, C. Mora, R. Bonomi, L. J. Prins, P. Scrimin, Chem. Eur. J.
2011, 17, 4879–4889.
C. A. Schoenbaum, D. K. Schwartz, J. W. Medlin, Acc. Chem. Res.
2014, 47, 1438–1445.
[3]
[4]
G. Pieters, L. J. Prins, New J. Chem. 2012, 36, 1931–1939.
N. K. Chaki, K. Vijayamohanan, Biosensors and Bioelectronics 2002,
17, 1–12.
[5]
[6]
N. A. S. Omar, Y. W. Fen, J. Abdullah, Y. Mustapha Kamil, W. M. E. M.
M. Daniyal, A. R. Sadrolhosseini, M. A. Mahdi, Sci Rep 2020, 10, 2374.
S. Flink, F. C. J. M. van Veggel, D. N. Reinhoudt, Adv. Mater. 2000, 12,
1315–1328.
[7]
[8]
P. T. Mathew, F. Fang, Engineering 2018, 4, 760–771.
G. D. Kong, S. E. Byeon, S. Park, H. Song, S. Kim, H. J. Yoon, Adv.
Electron. Mater. 2020, 6, 1901157.
[9]
S. Casalini, C. A. Bortolotti, F. Leonardi, F. Biscarini, Chem. Soc. Rev.
2017, 46, 40–71.
[10] S. Rittikulsittichai, C. S. Park, A. C. Jamison, D. Rodriguez, O. Zenasni,
T. R. Lee, Langmuir 2017, 33, 4396–4406.
[11] L. Srisombat, A. C. Jamison, T. R. Lee, Colloids and Surfaces A:
Physicochemical and Engineering Aspects 2011, 390, 1–19.
[12] T. P. Sullivan, W. T. S. Huck, Eur. J. Org. Chem. 2003, 17–29.
[13] E. Colangelo, J. Comenge, D. Paramelle, M. Volk, Q. Chen, R. Lévy,
Bioconjugate Chem. 2017, 28, 11–22.
[14] C. Yan, M. Zharnikov, A. Gölzhäuser, M. Grunze, Langmuir 2000, 16,
6208–6215.
[15] J. Liu, B. Schüpbach, A. Bashir, O. Shekhah, A. Nefedov, M. Kind, A.
Terfort, C. Wöll, Phys. Chem. Chem. Phys. 2010, 12, 4459–4472.
[16] S. Zhang, K. L. Chandra, C. B. Gorman, J. Am. Chem. Soc. 2007, 129,
4876–4877.
approximately
2500 cm–1.
Complementary
plasmonic
nanostructure designs are expected to intensify the Raman
signals also at higher wavenumbers to detect and monitor C–H,
O–H and N–H vibrations. Secondly, it would be desirable, if the
samples could be kept in the solution and the chemical
transformations of the SAMs could be followed in-line, instead of
a separate location. This would enable real-time measurements
upon conducting the reactions and thereby avoid interrupting the
processes. Thirdly, monitoring a broad variety of chemical
reactions and substrates will establish the full capacity of the
method. Further improvements on the plasmonic nanohole arrays
are currently in development: masking the Si signals originating
from the underlying carrier wafer below the Au layer is envisioned
to provide fewer background signals that overlap with signals from
the SAMs and the integration of nanohole arrays in Au thin-film
electrodes as SERS tags will enable performing electrochemical
reactions on SAMs. We anticipate that the method presented
herein will allow the detection of various reactions at SAMs,
enable profound applications for various disciplines and that
technical improvements will render high precision assay
development feasible.
[17] C. Vericat, M. E. Vela, G. Benitez, P. Carro, R. C. Salvarezza, Chem.
Soc. Rev. 2010, 39, 1805–1834.
[18] S. Chakrabarty, S. Maity, D. Yazhini, A. Ghosh, Langmuir 2020, 36,
11255–11261.
[19] K. Rajalingam, L. Hallmann, T. Strunskus, A. Bashir, C. Wöll, F. Tuczek,
Phys. Chem. Chem. Phys. 2010, 12, 4390.
[20] S. A. Swanson, R. McClain, K. S. Lovejoy, N. B. Alamdari, J. S.
Hamilton, J. C. Scott, Langmuir 2005, 21, 5034–5039.
[21] I. Protasova, S. Heißler, N. Jung, S. Bräse, Chem. Eur. J. 2017, 23,
8703–8711.
[22] M. Hesse, H. Meier, B. Zeeh, S. Bienz, L. Bigler, T. Fox,
Spektroskopische Methoden in der organischen Chemie, Georg Thieme
Verlag, Stuttgart, 2016.
[23] J. Langer, D. Jimenez de Aberasturi, J. Aizpurua, R. A. Alvarez-Puebla,
B. Auguié, J. J. Baumberg, G. C. Bazan, S. E. J. Bell, A. Boisen, A. G.
Brolo, J. Choo, D. Cialla-May, V. Deckert, L. Fabris, K. Faulds, F. J.
García de Abajo, R. Goodacre, D. Graham, A. J. Haes, C. L. Haynes, C.
Huck, T. Itoh, M. Käll, J. Kneipp, N. A. Kotov, H. Kuang, E. C. Le Ru, H.
K. Lee, J.-F. Li, X. Y. Ling, S. A. Maier, T. Mayerhöfer, M. Moskovits, K.
Murakoshi, J.-M. Nam, S. Nie, Y. Ozaki, I. Pastoriza-Santos, J. Perez-
Juste, J. Popp, A. Pucci, S. Reich, B. Ren, G. C. Schatz, T. Shegai, S.
Schlücker, L.-L. Tay, K. G. Thomas, Z.-Q. Tian, R. P. Van Duyne, T. Vo-
Dinh, Y. Wang, K. A. Willets, C. Xu, H. Xu, Y. Xu, Y. S. Yamamoto, B.
Zhao, L. M. Liz-Marzán, ACS Nano 2020, 14, 28–117.
[24] W. Yue, Z. Wang, Y. Yang, L. Chen, A. Syed, K. Wong, X. Wang, J.
Micromech. Microeng. 2012, 22, 125007.
[25] P. Mosier-Boss, Nanomaterials 2017, 7, 1–30.
[26] D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, J. Popp,
Anal Bioanal Chem 2012, 403, 27–54.
[27] G. Kolhatkar, J. Plathier, A. Ruediger, J. Mater. Chem. C 2018, 6, 1307–
1319.
[28] P. Verma, Chem. Rev. 2017, 117, 6447–6466.
[29] S. Schlücker, Angew. Chem. Int. Ed. 2014, 53, 4756–4795; Angew.
Chem. 2014, 126, 4852–4894.
Acknowledgements
We are grateful to P. Tiwari, M. Raschke, O. Martin, G.-L. Bona,
and E. Scheer for scientific discussions, and D. Dávila Pineda,
D. Caimi, R. Stutz, M. Tschudy, M. Bꢀrge, A. Zulji, U. Kloter, and
M. Stampfer for technical assistance. We thank B. Michel, W.
Riess, H. Riel, and A. Curioni for continuous support. We are
grateful to L. Rudin for linguistic advice. Funding from the Swiss
National Science Foundation – NCCR Molecular Systems
Engineering (grant no. 51NF40-182895) is gratefully
[30] S. E. J. Bell, G. Charron, E. Cortés, J. Kneipp, M. L. Chapelle, J.
Langer, M. Procházka, V. Tran, S. Schlücker, Angew. Chem. Int. Ed.
2020, 59, 5454–5462; Angew. Chem. 2019, 132, 5496–5505.
[31] M. Gellner, S. Niebling, H. Y. Kuchelmeister, C. Schmuck, S. Schlücker,
Chem. Commun. 2011, 47, 12762–12764.
[32] Y. He, C. Song, L. Que, Microsyst Technol 2019, 25, 4349–4356.
[33] D. Cialla, U. Hübner, H. Schneidewind, R. Möller, J. Popp,
ChemPhysChem 2008, 9, 758–762.
[34] A. E. Cetin, D. Etezadi, B. C. Galarreta, M. P. Busson, Y. Eksioglu, H.
Altug, ACS Photonics 2015, 2, 1167–1174.
[35] Y. Zhang, Y. Hu, G. Li, R. Zhang, Microchim Acta 2019, 186, 477.
7
This article is protected by copyright. All rights reserved.