CB2
1EZ,
UK;
fax:
(+44)
1223-336-033;
or
e-mail:
3.2 Butadiene polymerization
References
All complexes were used to catalyze the polymerization of butadiene.
Aggregate data is listed in Table 2. These catalysts did not exhibit butadiene
polymerization activity when AlR3 was used as a cocatalyst. However, when
these complexes were activated by MAO, they exhibited moderate to high
activity (82.5%-98.3%) at room temperature and the resulting unit was a cis-
1,4 structure-based polybutadiene with relatively narrow PDI (Mw/Mn = 1.20
-2.21, representative GPC profile of polybutadiene was listed in Fig. S4).
The catalytic activity decreased as the volume of the ligand substituent
increased, and the molecular weight of the polymer increased significantly as
the volume of the ligand increased. The reason for the analysis may be that
when MAO was used as a cocatalyst, a complex having a small steric
hindrance had a high activation efficiency, and thus the activity was
relatively high, and the molecular weight of the polymer was low. We can
see that in entries 1-4, the selectivity of the catalyst increased mildly as the
volume of the ligand’s substituent increased. When the catalyst was selected
to be complex 4/MAO, the selectivity was the highest, which was 96.2% (see
Fig. S3, Table 2, entry 4). The volume of the ligand had little effect on
selectivity (92.1%-96.2%). These results obtained by the Co(II) complexes
are close to the previous work which was reported by Appukuttan.[39] The
initial concentration of the cobalt catalyst is reduced by half and a longer
reaction time is required (Table 2, entry 5). Kinetic study using 4/MAO
[1] D. Wilson, Makromol. Chem., Macromol. Symp. 66 (96), (1993) 273.
[2] A. Iraqi, D. J.Cole-Hamilton, Polyhedron. 10 (9), (1991) 993.
[3] M. Yousefi, F. Gholamian, D. Ghanbari, M. Salavati-Niasari, Polyhedron, 30 (6), (2011)
1055.
[4] L. Porri, A. Giarrusso, G.C. Eastmond, A. Ledwith, S. Russo, P. Sigwalt (Eds.),
Comprehensive Polymer Science, vol. 4, Part II, Pergamon Press, Oxford, 1989, pp. 53–108.
[5] G. Natta, L. Porri, A. Carbonaro, G. Stoppa, Makromol. Chem. 77, (1964) 114.
[6] L. Porri, A. Giarrusso, G. Ricci. Makromol. Chem., Macromol. Symp. 48 (1), (1991) 239.
[8] G. Ricci, A. Panagia, L. Porri, Polymer, 37 (2), (1996) 363.
[9] G. Ricci, D. Morganti, A. Sommazzi, R. Santi, F. Masi, J. Mol. Catal. A: Chem. 204/205
(15), (2003)287.
[10] U. Siegert, T. J. Muller, J. C. Swarts. Polyhedron, 51 (4), (2013) 41.
[11] H. Ashitaka, K. Jinda, H. Ueno, J. Polym. Sci., Polym. Chem. Ed. 21(7), (1983) 1989.
[12] H. Liu, S. Yang. F. Wang, C. Bai, Y. M. Hu, X. Q. Zhang, Chinese J. Polym. Sci, 34(9),
(2016)1060.
[13] Y. Zeng, H. Feng, Y. Xie, R. B. King, New J. Chem., 38 (9), (2014) 4275.
[14] L. Fang, W. Zhao, C. Han, C. Zhang, H. Liu, Y. Hu, X. Q. Zhang, Chin J Polym Sci
(2518).
[15] M. D. Rausch, I. Bernal, B. R. Davies, A. Siegel, F. A. Higbie, G. F. Westover, Journal of
Coordination Chemistry, 3 (2), (1973) 149.
[16] S. Yamakawa, D. Takeuchi, K. Osakada, S. Takano, S. Kaita, Reactive and Functional
Polymers, 136, (2019) 19.
system
revealed
that
the
polymerization
yield
[17] B. Gao, X. Luo, W. Gao, L. Huang, S. Gao, X. Liu, Q. Wu, Y. Mu, Dalton Trans. 41, (2012)
2755.
could reach up to 98.3% within 60 min (Table 2, entry 5). The cis-1,4-
content of the polymers decreased from 96.2% to 82.3%, and the trans -1,4-
and 1,2- levels increased from 2.5% and 1.3% to 12.0% and 5.7%,
respectively, when the temperature rose from 25 to 50 °C. This trend may be
attributed to anti-syn isomerization promoted at high temperatures through π-
σ rearrangement. [8] In principle, the polybutadiene-based chain can be in
the form of π-allylic the metal center coordination, which includes inversion
and formation; the former isomer produces cis-1,4- and 1,2-units, and the
latter isomers produce trans -1,4- and 1,2-parts (Fig. S5). At lower
temperatures, the path 1 is dynamically advantageous due to the combination
of π-back-bonding, and the 1,3-butadiene monomer tends to form a cis-1,4-
structure. With the increase of temperature, the anti-syn isomerization
through π-σ- rearrangement is gradually promoted, because the syn isomers
are more stable in thermodynamics, so the content of trans -1,4- and 1,2-
units increases.
[18] B. Gao, W. Gao, Q. Wu, X. Luo, J. Zhang, Q. Su, Y. Mu, Organometallics, 30, (2011)
5480.
Macromolecules, 42 (5), (2009)1443.
[21] G. Ricci, A. Forni, A. Boglia, T. Motta, J. Mol. Cat. A: Chem. 226 (2), (2005) 235.
[22] G. Ricci, A. Forni, A. Boglia, T. Motta, G. Zannoni, M. Canetti, Bertini, Macromolecules,
38 (4), (2005) 1064.
[23] T. Ziegler, E. Zurek, Progress in Polymer Science. 29 (2), (2004) 107.
[24] E. Susa, J. Polym. Sci. C 4, (1963) 399.
[25] J. S. Kim, C. Ha, I. Kim, e-Polymers 027 (2006).
[26] X. Jia. H. Liu, Y. Hu, Q. Dai, J. Bi, C. Bai, X. Q. Zhang, Chinese Journal of Catalysis, 34,
(8), (2013) 1560.
[27] B. Gao, L. Xin, W. Gao, Z. Hao, X. Xin, Q. Wu, Y. Mu, Polyhedron, 63 (31), (2013) 91.
[28] B. Xu, A. Ma, T. Jia, Z. Hao, W. Gao, Y. Mu Dalton Trans. 45, (2016) 17966.
[29] Y. Cui, D. Li, B. Gao, Y. Zhou, L. Chen, B. Qiu, Y. Li, Q. Duan, N. Hu, J Coord. Chem.
Table 2. Polymerization of butadiene under various conditions a
69 (4), (2016) 656.
b
microstructurec (%)c
a
Unless otherwise specified, the
entry Cat.
T
Al/Co time Conv.
Mn
PDI
[30] Z. Wen, D. Li, J. Qi, X. Chen, Y. Jiang, L.
Chen, B. Gao, Y. Cui, Q. Duan, Colloid Polym.
polymerization reactions: toluene (12 mL),
cat (20 μmol based on Co) butadiene 8
℃
min
%
(×10-4)
cis-1,4 trans-1, 4 1, 2
Sci. 293 (12), (2015)3449.
mmol,
Monomer/Co
=
400,
1
2
3
4
5
6
1
2
25 400
25 400
25 400
25 400
60
60
60
60
93.8
90.3
87.2
82.5
1.70
2.24
4.09
7.63
9.02
9.77
2.21
1.51
1.35
1.20
1.32
1.29
92.1
94.9
95.3
96.2
95.8
82.3
5.9
3.3
2.0
1.8
1.5
1.3
1.3
5.7
[31] Y. Liu, Z. Chen, L. Liu, Y. Peng, X.
Hong, B. Yang, H. Liu, H. Liang C. Orvig,
Dalton Trans., 0 (48), (2009) 10813.
[32] B. Gao, R. Duan, X. Pang, X. Li, Z.
Qu, Z. Tang, X. Zhuang, and X. S. Chen,
Organometallics, 32 (19), (2013) 5435.
[33] B. Gao, D. Li, X. Li, R. L. Duan, X.
Pang, Y. Cui, Q. Duan and X. S. Chen,
MAO/Monomer = 1. b Determined by gel
permeation chromatography (GPC) with
respect to
a polystyrene standard. c
3
3.2
Determined by 13C NMR spectrum and IR.
4
4d
2.5
d cat. (10 μmol based on Co).
25 400 360 88.9
50 400 60 98.3
2.9
12.0
4.Conclusion
4
In this work, a series of Co(II)
complexes based on different substituted
monoimine ligands were synthesized. All the
characterized by elemental analysis and infrared characterization, and a
complex was characterized by single crystal structure and XPS. Under
the action of MAO, these complexes catalyzed the polymerization of
butadiene to exhibit different catalytic activities, and obtained
predominantly cis-1,4-polybutadiene.
Catal. Sci. Technol. 5 (9), (2015) 4644.
phenanthrenequinone
complexes were
[34] S. Mukherjee, M. R. Daniels, R. Bagai, K. A.Abboud, G. Christou, C. Lampropoulos,
Polyhedron, 29 (1), (2010) 54.
[35] A. Banerjee, S. Chattopadhyay, Polyhedron, 159 (1), (2019) 1.
[36] J. Mayans, A. Martin, M. Font-Bardia, A. Escuer, Polyhedron, 150 (1), (2018)10.
[37] R. Golbedaghi, R. Fausto, Polyhedron, 155 (15), (2018)1.
[38] M. N. Bochkarev, A. A. Fagin, N. O. Druzhkov, V. K. Cherkasov, M. A. Katkova, G. K.
Fukin, Y. A. Kurskii, J. Organomet. Chem., 695 (25–26), (2010)2774.
[39] G. M. Sheldrick, SHELXTL, Structure Determination Software Programs; Bruker
Analytical X-ray System, Inc., Madison, WI, 1997.
Acknowledgement
[40] N. Noshiranzadeh, M. Emami, R. Bikas, K.
Ślepokura, Polyhedron 133(5), (2017) 155.
[41] M. Emami, N. Noshiranzadeh, R. Bikas, A. Gutierrez, A. Kozakiewicz, Polyhedron
122(28), (2017) 137.
This work was supported by the National Natural Science Foundation of
China (No. 21204082); Jilin Province Science and Technology
Development Program (No. 20180101189JC). Youth Scientific Research
Fund of the Science and Technology Department, Jilin Province, China
(No. 20160520132JH); Foundation of Department of Education of Jilin
Province (No. 2016363 and JJKH20170606KJ); China Postdoctoral
Science Foundation (No. 2016M601356).
[42] R. Bikas, H. Hosseini-Monfared, M. Korabik, M. S. Krawczyk, T. Li, Polyhedron
81(15), (2014) 282.
[43] V. Appukuttan, L. Zhang, J. Y. Ha, D. Chandran, B. K. Bahuleyan, C. Ha, I. Kim,
Journal of Molecular Catalysis A: Chemical 325 (1-2), (2010) 84.
[44] D. Gong, B. Wang, C. Bai, J. Bi, F.Wang, W. Dong, X. Q. Zhang , L. Jiang. Polymer
50 (26), (2009) 6259.
[45] A. Jana, S. Konar, , S. Ray, J. A. Golen, A. L.Rheingold, L. M. Carrella, E. Rentschler,
T. K. Mondal, S. K. Kar, Polyhedron 38 (1), (2012) 258.
[46] S. Park, J. Lee, H. Lee, A. R. Jeong, K. S. Min, S. Nayab, Appl Organometal Chem.
33, (2019) e4766.
[47] H. Chen, W. Pan, K. Huang, X. Zhang, D. Gong, Polym. Chem. 8(11), (2017) 1805.
[48] P. Saxena, R. Murugav, Chem. Select, 2 (13), (2017) 3812.
[49]J. Liu, S. Jiang, P. Neugebauer, J. Slageren, Y. Lan, W. Wernsdorfer, B. Wang, S. Gao.
Appendix A. Supplementary data
CCDC 1893440 contains the supplementary crystallographic data
for
Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge
2
.
These data can be obtained free of charge via
from the