6150 J. Phys. Chem. B, Vol. 108, No. 20, 2004
Nagashima et al.
hydrogen bond) have been assumed, we have concluded that
pathway (i) is predominant and that the hydrogen bond mainly
has a role in crystal scaffolding.
Acknowledgment. This work was partly supported by a
Grant-in-Aid for Scientific Research (B) 15310094 from the
Ministry of Education, Culture, Sports, Science, and Technol-
ogy, Japan. H. N. thanks financial supports from Keio University
(Keio Leading-edge Laboratory of Science and Technology) and
the 21st Century COE program “KEIO Life Conjugate Chem-
istry” from the Ministry of Education, Culture, Sports, Science,
and Technology, Japan.
Supporting Information Available: Variation of Fermi
contact terms and Mulliken spin densities of H atoms, as a
function of the dihedral angle between the aryl rings and the
ONCNO moeities (Figure 1S); angular dependence of calculated
J values for rotation of the naphthimidazole ring (Figure 2S)
and the NN unit (Figure 3S). (PDF and CIF data.) This material
References and Notes
(1) (a) Kahn, O. Molecular Magnetism; VCH: New York, 1993. (b)
Lahti, P. M. Magnetic Properties of Organic Radicals; Marcel Dekker: New
York, 1999. (c) Miller, J. S.; Drillon, M. Magnetism: Molecules to
Materials; VCH: Weinheim, Germany, 2001.
(2) (a) Veciana, J.; Cirujeda, J.; Rovira, C.; Molins, E.; Novoa, J. J. J.
Phys. I 1996, 6, 1967. (b) Lang, A.; Pei, Y.; Ouahab, L.; Kahn, O. AdV.
Mater. 1996, 8, 60. (c) Romero, F. M.; Ziessel, R.; Drillon, M.; Tholence,
J.-L.; Paulsen, C.; Kyritsakas, N.; Fisher, J. AdV. Mater. 1996, 8, 826. (d)
Akita, T.; Kobayashi, K. AdV. Mater. 1997, 9, 346. (e) Matsushita, M. M.;
Izuoka, A.; Sugawara, T.; Kobayashi, T.; Wada, N.; Takeda, N.; Ishikawa,
M. J. Am. Chem. Soc. 1997, 119, 4369. (f) Doi, K.; Ishida, T.; Nogami, T.
Chem. Lett. 2003, 32, 544.
(3) (a) Kawakami, T.; Takeda, S.; Mori, W.; Yamaguchi, K. Chem.
Phys. Lett. 1996, 261, 129. (b) Zhang, J.; Baumgarten, M. Chem. Phys.
1997, 214, 219. (c) Zhang, J.; Wang, L.; Zhang, H.; Wang, R. Synth. Met.
2003, 137, 1349.
(4) Maspoch, D.; Catala, L.; Gerbier, P.; Ruiz-Molina, D.; Vidal-
Gancedo, J.; Wurst, K.; Rovira, C.; Veciana, J. Chem. Eur. J. 2002, 8,
3635.
(5) (a) Yoshioka, N.; Irisawa, M.; Mochizuki, Y.; Kato, T.; Inoue, H.;
Ohba, S. Chem. Lett. 1997, 251. (b) Yoshioka, N.; Matsuoka, N.; Irisawa,
M.; Ohba, S.; Inoue, H. Mol. Cryst. Liq. Cryst. 1999, 334, 239.
(6) Craven, B. M.; McMullan, R. K.; Bell, J. D.; Freeman, H. C. Acta
Crystallogr., Sect. B: Struct. Cryst. Cryst. Chem. 1977, 33, 2585.
(7) Ried, W.; Lohwasser, H. Liebigs Ann. Chem. 1966, 699, 88.
(8) Lamchen, M.; Mittag, T. W. J. Chem. Soc. C 1966, 2300.
(9) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, M.; Giaco-
vazzo, C.; Guagliardi, A.; Polidori, G. J. Appl. Crystallogr. 1994, 27, 435.
(10) Sheldrich, G. M. SHELXL-97: Program for the Refinement of
Crystal Structure; University of Go¨ttingen, Germany, 1997.
(11) teXsan Single-Crystal Structure Analysis Software, Version 1.11,
MSC, The Woodlands, TX (and Rigaku, Tokyo, Japan).
(12) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.
N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels,
A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03,
Revision B.04, Gaussian, Inc., Pittsburgh, PA, 2003.
Figure 12. Schematic drawing of a canted orbital overlap of 4.
that the effect of deuteration on the magnetic interaction is
negligible and that pathway (i) is predominant. The hydrogen
bond mainly has a role in crystal scaffolding. Even though a
small spin density is induced on the NH proton and pathway
(ii) might exist in the crystal, the magnitude is much smaller
than that of pathway (i), and the observed magnetic interaction
of -14 cm-1 is mainly propagated by pathway (i).31
As mentioned previously, the O‚‚‚O distance of the nitroxide
units along the hydrogen-bonded chain direction is 2.99 Å.
Judging from the O‚‚‚O distance and the spin densities carried
by the O atoms of the nitroxide, the experimental J value of
-14 cm-1 is much smaller than that which is expected. This
can be explained by the canted overlap between the pz orbitals
(Figure 12). Spin densities are located in the pz orbitals
perpendicular to the ONCNO mean planes, and a strong
antiferromagnetic interaction is expected when a perfect anti-
parallel orbital overlap is realized, as shown in crystals such as
1 or 4-azaindol-2-yl nitronyl nitroxides.32 In the case of 4,
however, the dihedral angle between the best planes of
neighboring ONCNO moieties along the hydrogen-bonded chain
is 68.3°, and the overlap between the pz orbitals is incomplete,
resulting in a weaker antiferromagnetic interaction than ex-
pected.
J values calculated for the coordinate of a hydrogen-bonded
dimer at the UB3LYP/6-31G* and UBLYP/6-31G* levels are
-1.0 and -17.7 cm-1, respectively, qualitatively reproducing
the experimentally obtained J value of -14 cm-1. The strong
functional dependency might due to limitations of the density
functional calculation in the present case.
5. Summary
The one-dimensional hydrogen-bonded chain observed in the
crystal of 2-(naphth[2,3-d]imidazol-2-yl)-4,4,5,5-tetramethyl-4,5-
dihydro-1H-imidazolyl-1-oxyl-3-oxide (4) can be recognized as
an ideal one-dimensional spin system because each chain is well-
isolated by the steric effects of the naphth[2,3-d]imidazole ring
and four methyl groups. Although two magnetic interaction
pathways ((i) through-space interaction between the O atoms
of the nitroxide and (ii) through the NH‚‚‚ON intermolecular
(13) (a) Becke, A. D. Phys. ReV. A 1988, 38, 3098. (b) Lee, C.; Yang,
W.; Parr, R. G. Phys. ReV. B 1988, 37, 785. (c) Becke, A. D. J. Chem.
Phys. 1993, 98, 5648.
(14) Yamanaka, S.; Kawakami, T.; Nagao, H.; Yamaguchi, K. Chem.
Phys. Lett. 1994, 231, 25.