H. S. P. Rao et al. / Tetrahedron Letters 44 (2003) 4701–4704
4703
Scheme 2.
Scheme 3.
(
(
c) Coustard, J.-M. Tetrahedron 1995, 51, 10929–10940;
d) Terang, N.; Mehta, B. K.; Ila, H.; Junjappa, H.
Tetrahedron 1998, 54, 12973–12984; (e) Shigemitsu, Y.;
Tominaga, Y. Heterocycles 2001, 55, 2257–2260.
. Coustard, J.-M. Eur. J. Org. 2001, 1525–1531.
. Hsu, A. C.-H.; Osei-Gyimah, P.; Joseph, R. W.; Lange,
B. C. Eur. Pat. Appl. 1997; Chem. Abstr. 1997, 126,
3
4
2
63848.
. Rao, H. S. P.; Sakthikumar, L.; Shreedevi, S. Sulfur Lett.
002, 207–218.
. (a) Komarova, E. N.; Yufit, D. S.; Struchkov, Yu. T.;
Drozd, V. N. Zh. Org. Khim. 1989, 25, 1512–1519;
English translation, J. Org. Chem. USSR 1989, 1365–
5
6
isomers of 1-[1-(methylsulfanyl)-2-nitro-1-ethenyl]-
sulfanylbenzene 23 (Scheme 3) generated by conjugate
addition of the benzenethiolate anion followed by elim-
ination of methanethiolate anion. On the other hand,
the reaction of 2 with TMSCl in the presence of NaI in
THF at reflux resulted in a polymeric product. Thus, it
is clear from these studies that bis-alkylated products
could not be induced to undergo transformation to
dithiole derivative possibly due to the fact that the nitro
ethylene moiety behaves as a good Michael acceptor.
2
1
371; (b) Jackson, Y. A.; Parakka, J. P.; Lakshmikan-
tham, M. V.; Cava, M. P. J. Org. Chem. 1997, 62,
616–2618.
2
7
8
. Gomper, R.; Schaefer, H. Chem. Ber. 1967, 100, 591–604.
. Spectral data for selected compounds:
Compound 12 (C H NO S ): mp 88°C; UV (MeOH) u
7
9
2
3
max
4
1
1
16 nm; IR (Nujol) w 3111, 3058, 2922, 1524, 1462, 1376,
In this report we have shown that the simple reaction of
the dipotassium salt of 2-nitro-1,1-ethylenedithiol 1
with long chain or sterically hindered alkyl halides leads
to interesting 4-alkylsulfanyl 2-nitromethylidene-1,3-
dithioles along with bis-alkylated products. As hetero-
cyclic systems with more than one sulfur atom show
impressive physico-chemical properties, e.g. enhanced
−
1 1
289, 1256, 1189 cm ; H NMR (300 MHz, CDCl :CCl ,
3
4
:1) l 1.35 (d, 6H, J=6.9 Hz) 3.38 (heptet, 1H, J=6.9
13
Hz), 6.93 (s, 1H), 7.7 (s, 1H) ppm; C NMR (75 MHz,
CDCl :CCl , 1:1) l 23.25, 40.90, 121.41, 122.73, 133.09,
3
4
165.59 ppm.
Compound 15 (C H NO S ): mp 90°C; UV (MeOH)
umax 415 nm; IR (Nujol) w 3111, 3076, 2924, 2855, 1475,
10 15
2 3
11
electrical conductivity, our findings should be of gen-
eral interest.
−
1
1
1398, 1294, 1240, 1201 cm ; H NMR (300 MHz,
CDCl :CCl , 1:1) l 0.86 (t, 3H, J=7.2 Hz), 1.3–1.6 (m,
3
4
8
H), 2.34 (t, 2H, J=7.1 Hz), 6.89 (s, 1H), 7.68 (s, 1H)
13
ppm; C NMR (75 MHz, CDCl :CCl , 1:1) l 14.1,
3
4
Acknowledgements
2
1
2.58, 28.14, 29.57, 31.32, 36.71, 120.34, 121.43, 134.15,
65.50 ppm.
Compound 16 (C H NO S ): mp 101°C; UV (MeOH)
11
17
2 3
We thank the University Grants Commission, India for
financial support under SAP program and Professor A.
Srikrishna, Dr. C. V. Asokan and Dr. J. V. Mueller for
helpful discussions and recording of spectra. We thank
Professor Hans Scheeren for 2D NMR spectral data.
umax 417 nm; IR (Nujol) w 3112, 3085, 2935, 1481, 1292,
−1
1
1
242, 1203 cm ; H NMR (300 MHz, CDCl :CCl , 1:1)
3 4
l 0.87 (t, 3H, J=6.9 Hz), 1.28–1.50 (m, 8H), 1.60–1.68
m, 2H,), 2.89 (t, 2H, J=7.2 Hz), 6.89 (s, 1H), 7.68 (s,
(
13
1
2
1
H) ppm; C NMR (75 MHz, CDCl :CCl , 1:1) l 14.15,
3 4
2.63, 28.41, 28.80, 29.58, 31.71, 36.69, 120.38, 121.39,
34.13, 165.57 ppm.
References
Compound 17 (C H NO S ): mp 108°C; UV (MeOH)
12 19 2 3
umax 418 nm; IR (Nujol) w 3112, 3083, 2955, 2854, 1522,
−
1 1
1
2
. Metzner, P.; Thullier, A. Sulfur Reagents in Organic
Synthesis; Academic Press: New York, 1994.
1474, 1390, 1292, 1244, 1203 cm ; H NMR (300 MHz,
CDCl :CCl , 1:1) l 0.86 (t, 3H, J=6.9 Hz), 1.20–1.50 (m,
3
4
. (a) Tominaga, Y.; Matsuda, Y. J. Heterocyclic Chem.
10H), 1.61–1.68 (m, 2H), 2.89 (t, 2H, J=7.2 Hz), 6.89 (s,
1H), 7.69, (s, 1H) ppm; C NMR (75 MHz, CDCl :CCl ,
3 4
13
1
985, 22, 937–949; (b) Kolb, M. Synthesis 1990, 171–190;