Organic Letters
Letter
Scheme 6. Oxidative Functionalization of Ring C
REFERENCES
■
(1) (a) Wang, P.; Yuan, H.-H.; Zhang, X.; Li, Y.-P.; Shang, L.-P.; Yin, Z.
Molecules 2014, 19, 2469. (b) Cherkasov, O. A.; Tolkachev, O. N. In
Narcissus and Daffodil; Hanks, G., Ed.; CRC Press: Boca Raton, 2002; p
242.
(2) (a) Wang, Y.-H.; Wan, Q.-L.; Gu, C.-D.; Luo, H.-R.; Long, C.-L.
Chem. Cent. J. 2012, 6, 96. (b) Lamoral-Theys, D.; Decastecker, C.;
Mathieu, V.; Dubois, J.; Kornienko, A.; Kiss, R.; Evidente, A.; Pottier, L.
Mini Rev. Med. Chem. 2010, 10, 41. (c) Evidente, A.; Kireev, A. S.; Jenkis,
A. R.; Romero, A. E.; Steelant, W. F. A.; Van Slambrouck, S.; Kornienko,
A. Planta Med. 2009, 75, 501. (d) Lamoral-Theys, D.; Andolfi, A.; Van
Goietsenoven, G.; Cimmino, A.; Le Calve, B.; Wauthoz, N.; Meg
́
alizzi,
V.; Gras, T.; Bruyere, C.; Dubois, J.; Mathieu, V.; Kornienko, A.; Kiss, R.;
́
Evidente, A. J. Med. Chem. 2009, 52, 6244. (e) Evidente, A.; Kornienko,
A. Phytochem. Rev. 2009, 8, 449. (f) Kornienko, A.; Evidente, A. Chem.
Rev. 2008, 108, 1982.
Scheme 7. End Game Synthesis of Lycorine
(3) (a) Yamada, K.-i.; Yamashita, M.; Sumiyoshi, T.; Nishimura, K.;
Tomioka, K. Org. Lett. 2009, 11, 1631. (b) Schultz, A. G.; Holoboski, M.
A.; Smyth, M. S. J. Am. Chem. Soc. 1996, 118, 6210. (c) Hoshino, O.;
Ishizaki, M.; Kamei, K.; Taguchi, M.; Nagao, T.; Iwaoka, K.; Sawaki, S.;
Umezawa, B.; Iitaka, Y. J. Chem. Soc., Perkin Trans. 1 1995, 571.
(d) Hoshino, O.; Ishizaki, M.; Kamei, K.; Taguchi, M.; Nagao, T.;
Iwaoka, K.; Sawaki, S.; Umezawa, B.; Iitaka, Y. Chem. Lett. 1991, 1365.
(e) Boeckman, R. K., Jr.; Goldstein, S. W.; Walters, M. A. J. Am. Chem.
Soc. 1988, 110, 8250. (f) Sano, T.; Kashiwaba, N.; Toda, J.; Tsuda, Y.;
Irie, H. Heterocycles 1980, 14, 1097. (g) Møller, O.; Steinberg, E.-M.;
Torssell, K. Acta Chem. Scand., Sect. B 1978, 32, 98. (h) Tsuda, Y.; Sano,
T.; Taga, J.; Isobe, K.; Toda, J.; Irie, H.; Tanaka, H.; Takagi, S.; Yamaki,
M.; Murata, M. J. Chem. Soc., Chem. Commun. 1975, 933.
(4) Its structure was first determined by Uyeo and co-workers:
(a) Kondo, H.; Uyeo, S. Chem. Ber. 1935, 68, 1756. Confirmation by X-
ray crystalliographic analysis was obtained after conversion to
dihydrolycorine hydrobromide: (b) Shiro, M.; Sato, T.; Koyama, H.
Chem. Ind. 1966, 1229.
(5) For the related formal synthesis of lycorine, see: (a) Sun, Z.; Zhou,
M.; Li, X.; Meng, X.; Peng, F.; Zhang, H.; Shao, Z. Chem.Eur. J. 2014,
20, 6112. (b) Padwa, A.; Brodney, M. A.; Lynch, S. M. J. Org. Chem.
2001, 66, 1716. (c) Umezawa, B.; Hoshino, O.; Sawaki, S.; Sashida, H.;
Mori, K.; Hamada, Y.; Kotera, K.; Iitaka, Y. Tetrahedron 1984, 40, 1783.
(d) Martin, S. F.; Tu, C.-y. J. Org. Chem. 1981, 46, 3764. (e) Umezawa,
B.; Hoshino, O.; Sawaki, S.; Sashida, H.; Mori, K. Heterocycles 1979, 12,
1475.
(6) (a) Cho, H.-K.; Lim, H.-Y.; Cho, C.-G. Org. Lett. 2013, 15, 5806.
(b) Jung, Y.-G.; Lee, S.-C.; Cho, H.-K.; Darvatkar, N. B.; Song, J.-Y.;
Cho, C.-G. Org. Lett. 2013, 15, 132. (c) Jung, Y.-K.; Kang, H.-U.; Cho,
H.-K.; Cho, C.-G. Org. Lett. 2011, 13, 5890. (d) Chang, J. H.; Kang, H.-
U.; Jung, I.-H.; Cho, C.-G. Org. Lett. 2010, 12, 2016. (e) Tam, N. T.;
Jung, E.-J.; Cho, C.-G. Org. Lett. 2010, 12, 2012. (f) Tam, N. T.; Cho, C.-
G. Org. Lett. 2008, 10, 601. (g) Tam, N. T.; Chang, J.; Jung, E.-J.; Cho,
C.-G. J. Org. Chem. 2008, 73, 6258. (h) Shin, I.-J.; Choi, E.-S.; Cho, C.-G.
Angew. Chem., Int. Ed. 2007, 46, 2303. (i) Tam, N. T.; Cho, C.-G. Org.
Lett. 2007, 9, 3319. (j) Kim, H.-Y.; Cho, C.-G. Prog. Heterocycl. Chem.
2007, 18, 1. (k) Ryu, K.; Cho, Y.-S.; Cho, C.-G. Org. Lett. 2006, 8, 3343.
(7) Pereira, S.; Srebnik, M. Organometallics 1995, 14, 3127.
(8) (a) Saitman, A.; Theodorakis, E. A. Org. Lett. 2013, 15, 2410.
(b) Mulzer, J.; Giester, G.; Gilbert, M. Helv. Chim. Acta 2005, 88, 1560.
(9) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307.
(10) (a) Nicolaou, K. C.; Ortiz, A.; Zhang, H.; Guella, G. J. Am. Chem.
Soc. 2010, 132, 7153. (b) Mihelich, E. D.; Daniels, K.; Eickhoff, D. J. J.
Am. Chem. Soc. 1981, 103, 7690.
generated the C3/C3a double bond, which provided tetracyclic
lactam 30 in 71% over two steps. LiAlH4 reduction of lactam 31
in THF gave rise to lycorine.11 Because of poor solubility in
standard organic solvents, the lycorine product was converted
into diacetate 31 for the structural confirmation.
In summary, we have developed a new synthetic route to
( )-lycorine starting from the endo-cycloadduct of 3,5-dibromo-
2-pyrone and (E)-β-borylstyrene. Boronate oxidation and a set of
reactions including face-selective epoxidation provided the
pivotal C1-OH group and C3/C3a double bond. We are
currently pursuing enantioselective syntheses of the Amaryllida-
ceae type alkaloids including (−)-lycorine with the development
of catalytic asymmetric Diels−Alder reactions of 3,5-dibromo-2-
pyrone.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and spectral data. This material is
AUTHOR INFORMATION
Corresponding Author
■
Notes
(11) Actual yield was not measured due to the low solubility. The same
reduction was reported in the literature, furnishing ( )-lycorine in 49%
isolation yield (ref 3f).
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the grants from the National
Research Foundation of Korea (2012R1A2A4A01005064 and
2012M3A7B4049661).
C
dx.doi.org/10.1021/ol502792p | Org. Lett. XXXX, XXX, XXX−XXX