22
D. Wang et al. / Carbon 154 (2019) 13e23
[2] Y. Wang, Z. Wei, Y. Nie, Y. Zhang, Generation of three dimensional pore-
[25] J. Yang, M.R. Jo, M. Kang, Y.S. Huh, H. Jung, Y.-M. Kang, Rapid and controllable
synthesis of nitrogen doped reduced graphene oxide using microwave-
assisted hydrothermal reaction for high power-density supercapacitors, Car-
[26] W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem.
[27] L.Q. Mai, A. Minhas-Khan, X. Tian, K.M. Hercule, Y.-L. Zhao, X. Lin, et al.,
Synergistic interaction between redox-active electrolyte and binder-free
functionalized carbon for ultrahigh supercapacitor performance, Nat. Com-
[28] Y. Zhang, L. Ji, W. Li, Z. Zhang, L. Lu, L. Zhou, et al., Highly defective graphite for
scalable synthesis of nitrogen doped holey graphene with high volumetric
[29] Y.F. Nie, Q. Wang, X.Y. Chen, Z.J. Zhang, Nitrogen and oxygen functionalized
hollow carbon materials: the capacitive enhancement by simply incorpo-
rating novel redox additives into H2SO4 electrolyte, J. Power Sources 320
controlled nitrogen-doped graphene hydrogels for high performance super-
capacitors by employing formamide as the modulator, J. Mater. Chem. 5
[3] Y. Chen, Z. Liu, L. Sun, Z. Lu, K. Zhuo, Nitrogen and sulfur co-doped porous
graphene aerogel as an efficient electrode material for high performance
supercapacitor in ionic liquid electrolyte, J. Power Sources 390 (2018)
[4] Y. Xu, C.Y. Chen, Z. Zhao, Z. Lin, C. Lee, X. Xu, et al., Solution processable holey
graphene oxide and its derived macrostructures for high-performance
[5] Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, et al., Carbon-
based supercapacitors produced by activation of graphene, Science 332 (2011)
[6] H.-K. Kim, S.-M. Bak, S.W. Lee, M.-S. Kim, B. Park, S.C. Lee, et al., Scalable
fabrication of micron-scale graphene nanomeshes for high-performance
supercapacitor applications, Energy Environ. Sci.
9 (2016) 1270e1281,
€€
ꢀ
[30] A. Laheaar, P. Przygocki, Q. Abbas, F. Beguin, Appropriate methods for eval-
uating the efficiency and capacitive behavior of different types of super-
[7] X.-L. Su, L. Fu, M.-Y. Cheng, J.-H. Yang, X.-X. Guan, X.-C. Zheng, 3D nitrogen-
doped graphene aerogel nanomesh: facile synthesis and electrochemical
properties as the electrode materials for supercapacitors, Appl. Surf. Sci. 426
[31] M.S. Lee, H.-J. Choi, J.-B. Baek, D.W. Chang, Simple solution-based synthesis of
pyridinic-rich nitrogen-doped graphene nanoplatelets for supercapacitors,
[8] Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step
hydrothermal process, ACS Nano
[9] Z.-S. Wu, Y. Sun, Y.-Z. Tan, S. Yang, X. Feng, K. Müllen, Three-dimensional
graphene-based macro-and mesoporous frameworks for high-performance
electrochemical capacitive energy storage, J. Am. Chem. Soc. 134 (2012)
[32] X. Sun, P. Cheng, H. Wang, H. Xu, L. Dang, Z. Liu, Z. Lei, et al., Activation of
graphene aerogel with phosphoric acid for enhanced electrocapacitive per-
[10] X. Yu, Y. Kang, H.S. Park, Sulfur and phosphorus co-doping of hierarchically
porous graphene aerogels for enhancing supercapacitor performance, Carbon
[11] J. Li, G. Zhang, C. Fu, Facile preparation of nitrogen/sulfur co-doped and hi-
erarchical porous graphene hydrogel for high-performance electrochemical
[12] C.-M. Chen, Q. Zhang, C.-H. Huang, X.-C. Zhao, B.-S. Zhang, Q.-Q. Kong, et al.,
Macroporous ‘bubble’ graphene film via template-directed ordered-assembly
for high rate supercapacitors, Chem. Commun. 48 (2012) 7149e7151, https://
[33] J. Yang, J. Shin, M. Park, G.-H. Lee, M. Amedzo-Adore, Y.-M. Kang, The syn-
ergistic effect of nitrogen doping and paraphenylenediamine functionaliza-
tion on the physicochemical properties of reduced graphene oxide for electric
double layer supercapacitors in organic electrolytes, J. Mater. Chem. 5 (2017)
[34] D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z.H. Zhu, G.Q. Lu,
Nitrogen-enriched nonporous carbon electrodes with extraordinary super-
[35] J. Oh, J.H. Lee, J.C. Koo, H.R. Choi, Y.K. Lee, T.S. Kim, et al., Graphene oxide
porous paper from amine-functionalized poly(glycidyl methacrylate)/gra-
phene oxide core-shell microspheres, J. Mater. Chem. 20 (2010) 9200e9204,
[36] K.C. Wasalathilake, D.G.D. Galpaya, G.A. Ayoko, C. Yan, Understanding the
structure-property relationships in hydrothermally reduced graphene oxide
[13] W. Zhang, C. Xu, C. Ma, G. Li, Y. Wang, K. Zhang, et al., Nitrogen-superdoped
3D graphene networks for high-performance supercapacitors, Adv. Mater. 29
[14] Y. Gogotsi, P. Simon, True performance metrics in electro-chemical energy
storage,
Science
334
(2011)
917e918,
[15] B. Song, J. Zhao, M. Wang, J. Mullavey, Y. Zhu, Z. Geng, et al., Systematic study
on structural and electronic properties of diamine/triamine functionalized
graphene networks for supercapacitor application, Nano Energy 31 (2017)
[16] Y. Lu, F. Zhang, T. Zhang, K. Leng, L. Zhang, X. Yang, et al., Synthesis and
supercapacitor performance studies of N-doped graphene materials using o-
phenylenediamine as the double-N precursor, Carbon 63 (2013) 508e516.
[17] B. Song, J. Choi, Y. Zhu, Z. Geng, L. Zhang, Z. Lin, et al., Molecular level study of
graphene networks functionalized with phenylenediamine monomers for
supercapacitor electrodes, Chem. Mater. 28 (2016) 9110e9121, https://
[18] Y. Chang, G. Han, J. Yuan, D. Fu, F. Liu, S. Li, Using hydroxylamine as a reducer
to prepare N-doped graphene hydrogels used in high-performance energy
[37] D. Dinda, A. Gupta, S.K. Saha, Removal of toxic Cr(VI) by UV-active function-
alized graphene oxide for water purification, J. Mater. Chem.
1 (2013)
[38] R.H. Sestrem, D.C. Ferreira, R. Landers, M.L.A. Temperini, G.M. Nascimento,
Synthesis and spectroscopic characterization of polymer and oligomers of
[39] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, et
al., Synthesis of graphene-based nanosheets via chemical reduction of exfo-
[40] D.W. Chang, H.-J. Choi, J.-B. Baek, Wet-chemical nitrogen-doping of graphene
nanoplatelets as electrocatalysts for the oxygen reduction reaction, J. Mater.
[41] J. Zhu, T. Feng, X. Du, J. Wang, J. Hu, L. Wei, High performance asymmetric
supercapacitor based on polypyrrole/graphene composite and its derived
nitrogen-doped carbon nanosheets, J. Power Sources 346 (2017) 120e127.
[19] D. Liu, C. Fu, N. Zhang, H. Zhou, Y. Kuang, Three-dimensional porous nitrogen
doped graphene hydrogel for high energy density supercapacitors, Electro-
[42] A.M. Khattak, Z.A. Ghazi, B. Liang, N.A. Khan, A. Iqbal, L. Li, et al., A redox-active
2D covalent organic framework with pyridine moieties capable of faradaic
[20] Y. Liao, Y. Huang, D. Shu, Y. Zhong, J. Hao, C. He, et al., Three-dimensional
nitrogen-doped graphene hydrogels prepared via hydrothermal synthesis as
high-performance supercapacitor materials, Electrochim. Acta 194 (2016)
[21] B. Xie, Y. Chen, M. Yu, T. Sun, L. Lu, T. Xie, et al., Hydrothermal synthesis of
layered molybdenum sulfide/N-doped graphene hybrid with enhanced
[22] J.W. Lee, J.M. Ko, J.D. Kim, Hydrothermal preparation of nitrogen-doped gra-
phene sheets via hexamethylenetetramine for application as supercapacitor
[23] A.S. ' liwak, B. Grzyb, N. Díez, G. Gryglewicz, Nitrogen-doped reduced gra-
phene oxide as electrode material for high rate supercapacitors, Appl. Surf. Sci.
[24] J.-M. Seo, L.-S. Tan, J.-B. Baek, Defect/edge-selective functionalization of car-
bon materials by “direct” friedelecrafts acylation reaction, Adv. Mater. 29
energy storage, J. Mater. Chem.
[43] J. Wang, H. Liu, H. Sun, W. Hua, H. Wang, X. Liu, et al., One-pot synthesis of
nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-
[44] Y.H. Lee, K.H. Chang, C.C. Hu, Differentiate the pseudocapacitance and dou-
blelayer capacitance contributions for nitrogen-doped reduced graphene ox-
ide in acidic and alkaline electrolytes, J. Power Sources 227 (2013) 300e308.
[45] Y. Song, J. Yang, K. Wang, S. Haller, Y. Wang, C. Wang, et al., In-situ synthesis of
graphene/nitrogen-doped ordered mesoporous carbon nanosheet for super-
[46] J. Zhao, Y. Li, G. Wang, T. Wei, Z. Liu, K. Cheng, et al., Enabling high-volumetric-
energy-density supercapacitors: designing open, low-tortuosity heteroatom-
doped porous carbon-tube bundle electrodes, J. Mater. Chem.
5 (2017)