M. Bandini et al. / Tetrahedron Letters 42 (2001) 3041–3043
3043
138.18. GC–MS m/z (relative intensity): 59 (9), 73
(100), 91 (18), 103 (39), 135 (8), 147 (37), 193 (21), 207
(3), 277 (41), 292 (2). IR (neat): 3076, 2959, 2831, 2362,
2329, 1458, 1257, 854 cm−1.
Tetrahedron Lett. 1998, 39, 3823; (d) ZnI2: Gassman, P.
G.; Talley, J. J. Tetrahedron Lett. 1978, 19, 3773; (e)
KCN/18-crown-6: Greenlee, W. J.; Hangauer, D. G. Tetra-
hedron Lett. 1983, 24, 4559; (f) LiClO4: Jenner, G. Tetra-
hedron Lett. 1999, 40, 491; (g) R2SnCl2: Whitesell, J. K.;
Apodaca, R. Tetrahedron Lett. 1996, 37, 2525; (h)
Zr(KPO4)2: Curini, M.; Epifanio, F.; Marcotullio, M. C.;
Rosati, O.; Rossi, M. Synlett 1999, 315; (i) MgBr2·Et2O:
Ward, D. E.; Hrapchak, M. J.; Sales, M. Org. Lett. 2000,
2, 57.
2-Methyl-2-trimethylsilyloxy-octanenitrile 20: Pale yel-
1
low oil (96% yield). H NMR (200 MHz, CDCl3): l
0.24 (s, 9 H), 0.87–0.93 (m, 3 H), 1.30–1.36 (m, 4 H),
1.44–1.50 (m, 2 H), 1.57–1.58 (m, 4 H), 1.67–1.74 (m, 3
H). 13C NMR (50 MHz, CDCl3): l 1.37, 14.10, 22.59,
24.28, 29.01, 30.97, 31.65, 43.39, 69.68, 122.16. GC–MS
m/z (relative intensity): 55 (19), 69 (18), 73 (81), 75
(100), 100 (91), 115 (15), 127 (8), 142 (36), 185 (69), 212
(21), 227 (1). IR (neat): 2959, 2835, 2362, 2335, 1460,
1374, 1248, 837 cm−1.
4. Flores-Lope´z, L. Z.; Parra-Hake, M.; Somanathan, R.;
Walsh, P. J. Organometallics 2000, 19, 2153 and references
cited therein.
5. Vachal, P.; Jacobsen, E. N. Org. Lett. 2000, 2, 867 and
references cited therein.
6. (a) Garcia Ruano, J. L.; Martin Castro, A. M.; Rodriguez,
J. M. J. Org. Chem. 1992, 57, 7235; (b) Golinski, M.;
Brock, C. P.; Watt, D. S. J. Org. Chem. 1993, 58, 159. For
catalytic enantioselective addition of TMSCN to ketones,
see: Belokon´, Y. N.; Green, B.; Ikonnikov, N. S.; North,
M.; Tararov, V. I. Tetrahedron Lett. 1999, 40, 8147;
Hamashima, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem.
Soc. 2000, 122, 7412. However, no examples of functional-
ized ketones were reported.
7. Performing the reaction with (Bu)3SnCN as the cyanating
agent, the product was isolated in lower yield: 62%, reac-
tion time 72 h.
8. It is important to note that the success of this method
depends on the use of rigorously anhydrous solvents. In
fact, carrying out the cyanation of 1 in CH2Cl2 (99.6%,
ACS reagent) the chemical yield significantly dropped to
28% (reaction time 48 h, InBr3 10 mol%).
9. The substituted ketones 3 and 6 were synthesized from the
a-hydroxy acetophenone, see: (a) Zhu, G.; Casalnuovo, A.
L.; Zhang, X. J. Org. Chem. 1998, 63, 8100 [3: Ac2O/py/
CH2Cl2; 6: TBDMSCl/imidazole/DMF]. Ketone 4 was
prepared following a known procedure, see: (b) Ballini, R.;
Bartoli, G.; Bosica, G.; Marcantoni, E.; Vita, P. J. Org.
Chem. 2000, 65, 5854. Ketones 7 and 8 were obtained as
follows: 7: morpholine/Et3N/9 reflux in Et2O; 8: p-Tol-SH/
K2CO3/9 in EtOH.
Acknowledgements
The authors would like to thank CNR and MURST
(Progetto Nazionale ‘Stereoselezione in Sintesi Organ-
ica: Metodologie ed Applicazioni’) and Bologna Uni-
versity (funds for selected research topics) for financial
support of this research.
References
1. Gregory, R. H. J. Chem. Rev. 1999, 99, 3649.
2. (a) Hydrogen cyanide: Lapworth, A. J. Chem. Soc. 1903,
83, 995; (b) Alkali-metal cyanides: Kurtz, P. Ann. Chem.
1951, 23, 572; (c) Organosilicone cyanides: Groutas, W.
C.; Felker, D. Synthesis 1980, 861 and references cited
therein; Fujii, A.; Sakaguchi, S.; Ishii, Y. J. Org. Chem.
2000, 65, 6209; (d) Acetone cyanohydrin: Kawasaki, Y.;
Fujii, A.; Nakano, Y.; Sakaguchi, S.; Ishii, Y. J. Org.
Chem. 1999, 64, 4214.
3. (a) Yb(CN)3: Matsubara, S.; Takai, T.; Utimoto, K.
Chem. Lett. 1991, 1447; (b) Yb(OTf)3: Yang, Y.; Wang, D.
Synlett 1997, 861; Yang, Y.; Wang, D. Synlett 1997, 1379;
(c) Cu(OTf)2: Saravanan, P.; Anand, R. V.; Singh, V. R.
.
.