3
348
Nicholas. J. Wardle et al. / Bioorg. Med. Chem. Lett. 21 (2011) 3346–3348
Figure 4. In vitro cell studies of the ligand 4 in OVCAR-3 cells. A histology picture of OVCAR-3 cells, (A) without and (B) with 1 nM of 4 after incubation for 24 h; (C) cell
counts for both colchicine (white) and the Gd(III) complex 5 after 24 h at various concentrations (black).
complex.21 The slight reduction in r
of 5 indicates that functional-
1
References and notes
ization of one arm of the DOTA hardly reduced the number of
water molecules (q) that were in fast exchange and that the amide
carbonyl was coordinated to the Gd(III) ion. The value of q for the
complex [Tb-(Gal-DO3A)] was reported to be 0.7 by fluorescence
study, and the enzymatically cleaved terbium complex [Tb-(R-
1
2
.
.
Cai, W. B.; Niu, G.; Chen, X. Y. Curr. Pharm. Des. 2008, 14, 2943.
Guthi, J. S.; Yang, S. G.; Huang, G.; Li, S. Z.; Khemtong, C.; Kessinger, C. W.;
Peyton, M.; Minna, J. D.; Brown, K. C.; Gao, J. M. Mol. Pharm. 2010, 7, 32.
3. Jain, T. K.; Foy, S. P.; Erokwu, B.; Dimitrijevic, S.; Flask, C. A.; Labhasetwar, V.
Biomaterials 2009, 30, 6748.
4. Chen, W.; Xu, N. F.; Xu, L. G.; Wang, L. B.; Li, Z. K.; Ma, W.; Zhu, Y. Y.; Xu, C. L.;
Kotov, N. A. Macromol. Rapid Commun. 2010, 31, 228.
5. Franchini, M. C.; Baldi, G.; Bonacchi, D.; Gentili, D.; Giudetti, G.; Lascialfari, A.;
Corti, M.; Marmorato, P.; Ponti, J.; Micotti, E.; Guerrini, U.; Sironi, L.; Gelosa, P.;
Ravagli, C.; Ricci, A. Small 2010, 6, 366.
2
2
DO3A)] was 1.2. Hence it is estimated the value of q to be about
ꢀ
1
as in the [Gd(DOTA)(H
2
O)] complex.
The efficiency of the ligand 4 for binding tubulin was assessed
in an ovarian carcinoma cell line, selected for its rapidly dividing
nature and sensitivity to colchicine.2 In fact the efficiency of 4 at
causing cell shape changes and cell death when compared to col-
chicine, produced very similar results. Cell counts showed that
both the Gd(III) complex 5 and colchicine were equally effective
at (significantly) reducing cell numbers (Fig. 4). In fact, there were
enough cells only at 1 nM which could still be harvested and pel-
leted for MRI scanning to assess the uptake of 5. However, at this
6.
Satpati, D.; Korde, A.; Pandey, U.; Dhami, P.; Banerjee, S.; Venkatesh, M. J.
Labelled Compd. Radiopharm. 2006, 49, 951.
3
7. Zareneyrizi, F.; Yang, D. J.; Oh, C. S.; Ilgan, S.; Yu, D. F.; Tansey, W.; Liu, C. W.;
Kim, E. E.; Podoloff, D. A. Anticancer Drugs 1999, 10, 685.
Hastie, S. B. Pharmacol. Ther. 1991, 51, 377.
Brossi, A.; Yeh, H. J. C.; Chrzanowska, M.; Wolff, J.; Hamel, E.; Lin, C. M.; Quin, F.;
Suffness, M.; Silverton, J. Med. Res. Rev. 1988, 8, 77.
8
9
.
.
1
1
0. Ravelli, R. B. G.; Gigant, B.; Curmi, P. A.; Jourdain, I.; Lachkar, S.; Sobel, A.;
Knossow, M. Nature 2004, 428, 198.
1. Andreu, J. M.; Perez-Ramirez, B.; Gorbunoff, M. J.; Ayala, D.; Timasheff, S. N.
Biochemistry 1998, 37, 8356.
1
concentration of 5, changes in r were too small to be detected.
A novel DO3A–colchicine tubulin-directed ligand and its Gd(III)
complex were thereby prepared, the former exhibiting an effi-
12. Mareel, M. M.; Demets, M. Int Rev Cytol: Surv. Cell Biol. 1984, 90, 125.
13. Muzaffar, A.; Brossi, A.; Lin, C. M.; Hamel, E. J. Med. Chem. 1990, 33, 567.
14. Ray, K.; Bhattacharyya, B.; Biswas, B. B. J. Biol. Chem. 1981, 256, 6241.
ciency similar to that of colchicine as an anti-cancer agent. The r
1
15. Bombuwala, K.; Kinstle, T.; Popik, V.; O Uppal, S.; Olesen, J. B.; Vina, J.;
Heckman, C. A. Beilstein J. Org. Chem. 2006, 2, ARTN 13.
of its Gd(III) complex is similar to that of the nonderivatised DOTA
complex. The synthetic strategy in producing a cyclen-based ligand
retaining its complexation property, that is, four nitrogen and four
oxygen donor atoms, and a drug-like molecule was achieved.
1
6. Efthimiadou, E. K.; Katsarou, M. E.; Fardis, M.; Zikos, C.; Pitsinos, E. N.;
Kazantzis, A.; Leondiadis, L.; Sagnou, M.; Vourloumis, D. Bioorg. Med. Chem. Lett.
2008, 18, 6058.
17. Caravan, P.; Farrar, C. T.; Frullano, L.; Uppal, R. Contrast Media Mol. Imaging
009, 4, 89.
2
1
8. Heppeler, A.; Froidevaux, S.; Macke, H. R.; Jermann, E.; Behe, M.; Powell, P.;
Supplementary data
Hennig, M. Chem. Eur. J. 1999, 5, 1974.
19. Castro, B.; Dormoy, J. R.; Evin, G.; Selve, C. Tetrahedron Lett. 1975, 1219.
20. Kocienski, P. J. Protecting Groups; Stuttgart: Georg Thieme Verlag, 2005.
21. Wardle, N. J.; Herlihy, A. H.; So, P. W.; Bell, J. D.; Bligh, S. W. A. Bioorg. Med.
Chem. 2007, 15, 4714.
Supplementary data (detailed synthetic procedures and spec-
troscopic data of the products 3–5, toxicity studies and relaxation
2
2
2. Moats, R. A.; Fraser, S. E.; Meade, T. J. Angew. Chem. 1997, 36, 726.
3. Tozer, G. M.; Kanthou, C.; Baguley, B. C. Nat. Rev. Cancer 2005, 5, 423.