Beilstein J. Org. Chem. 2019, 15, 830–839.
ORCID® iDs
mixture acetonitrile/H2O, which could be promising for future
applications of these catalysts in water. The disubstituted CD
derivative 11 was not active in this enantioselective reaction
(Table 3, entry 29) and this derivative was also tested in the
AAA reaction with (1S)-10-camphorsulfonic acid (CSA) ac-
cording to the original procedure [38], in which the cocatalyst
(1S)-CSA enhanced the efficiency of dimeric cinchona alka-
loids (Table 3, entry 30). However, there was no difference
observable under these conditions.
References
3. Breslow, R.; Dong, S. D. Chem. Rev. 1998, 98, 1997–2012.
4. Easton, C. J. Pure Appl. Chem. 2005, 77, 1865–1871.
Conclusion
5. Hapiot, F.; Tilloy, S.; Monflier, E. Chem. Rev. 2006, 106, 767–781.
We prepared a series of new 6-monosubstituted α-CD and β-CD
derivatives modified with four different cinchona alkaloids, i.e.,
cinchonine, cinchonidine, quinine, and quinidine. The products
were obtained in high yields through the CuAAC reaction and
subsequently applied as catalysts in enantioselective reactions.
We fully characterized the series of new 16 cinchona–CD deriv-
atives including non-methylated and permethylated CDs by
2D NMR, MS, IR spectroscopy and we optimized their prepara-
tion (less than 3 h and up to 95% isolated yield). We applied
them in the decarboxylative asymmetric allylic amination of a
Morita–Baylis–Hillman carbamate (10 mol % of catalyst, up to
75% ee, up to 76% isolated yield). We believe that these new
CD derivatives comprising cinchona alkaloids will be suitable
catalysts of other asymmetric reactions using them under green
chemistry conditions.
6. Bogliotti, N.; Dalko, P. I. Shape and Site-Selective Asymmetric
Reactions. In Enantioselective organocatalysis: reactions and
experimental procedures; Dalko, P. I., Ed.; Wiley-VCH: Weinheim,
2007.
7. Pedersen, C. M.; Bols, M. Cyclodextrin-Based Artificial Enzymes:
Synthesis and Function. In Organic Synthesis and Molecular
Engineering; Nielsen, M. B., Ed.; John Wiley & Sons, Inc.: Hoboken,
8. Wu, J.; Du, X.; Ma, J.; Zhang, Y.; Shi, Q.; Luo, L.; Song, B.; Yang, S.;
9. Tayade, Y. A.; Padvi, S. A.; Wagh, Y. B.; Dalal, D. S. Tetrahedron Lett.
10.Sim, J. H.; Song, C. E. Angew. Chem., Int. Ed. 2017, 56, 1835–1839.
11.Macaev, F.; Boldescu, V. Symmetry 2015, 7, 1699–1720.
12.Hapiot, F.; Menuel, S.; Ferreira, M.; Léger, B.; Bricout, H.; Tilloy, S.;
Monflier, E. ACS Sustainable Chem. Eng. 2017, 5, 3598–3606.
Supporting Information
13.Jouffroy, M.; Gramage-Doria, R.; Armspach, D.; Sémeril, D.;
Oberhauser, W.; Matt, D.; Toupet, L. Angew. Chem., Int. Ed. 2014, 53,
Supporting Information File 1
Experimental procedures, characterization data, copies of
NMR spectra and chiral HPLC analysis.
14.Hapiot, F.; Ponchel, A.; Tilloy, S.; Monflier, E. C. R. Chim. 2011, 14,
15.De Rosa, M.; La Manna, P.; Talotta, C.; Soriente, A.; Gaeta, C.;
Neri, P. Front. Chem. (Lausanne, Switz.) 2018, 6.
16.Kanagaraj, K.; Suresh, P.; Pitchumani, K. Org. Lett. 2010, 12,
Supporting Information File 2
2D NMR spectra of compounds 4a–d and 5a–d.
17.Doyagüez, E. G.; Fernández-Mayoralas, A. Tetrahedron 2012, 68,
18.Shen, H.-M.; Ji, H.-B. Tetrahedron Lett. 2012, 53, 3541–3545.
19.Liu, K.; Zhang, G. Tetrahedron Lett. 2015, 56, 243–246.
Supporting Information File 3
2D NMR spectra of compounds 8a–d, 9a–d and 11.
20.Kacprzak, K. M. Chemistry and Biology of Cinchona Alkaloids. In
Natural Products; Ramawat, K. G.; Mérillon, J.-M., Eds.; Springer:
Berlin, Heidelberg, 2013; pp 605–641.
21.Ghosh, A. K.; Zhou, B. Tetrahedron Lett. 2013, 54, 3500–3502.
Acknowledgements
22.Nakayama, Y.; Gotanda, T.; Ito, K. Tetrahedron Lett. 2011, 52,
The work has been supported by the Grant Agency of Charles
University under project No.277015 and project SVV 260429.
The authors also thank to Dr. Carlos V. Melo for proofreading
the manuscript.
23.Ogawa, S.; Shibata, N.; Inagaki, J.; Nakamura, S.; Toru, T.; Shiro, M.
Angew. Chem., Int. Ed. 2007, 46, 8666–8669.
838