ChemComm
Communication
either in cells or animal models, are not available.6 The cellular
model described here could be used for example for high-
throughput screening of therapeutic agents by fluorescent
microplate-based analysis and help in the identification of lead
anti-fibrotic drugs from a series of candidates.
We thank the EU (Erasmus studentship to B.A.; Marie Curie CIG
to G.J.L.B.), FCT Portugal (FCT Investigator to G.J.L.B.), the EPSRC
and the National Institute of Health Research for funding. We also
thank Karin Mu¨ller for help with confocal microscopy and SEM
and Dr Filipa Cruz for critical reading of the manuscript. G.J.L.B. is
a Royal Society University Research Fellow.
Notes and references
1 M. D. Shoulders and R. T. Raines, Annu. Rev. Biochem., 2009, 78,
Fig. 3 Effect of pre-incubation with iodoacetamide (IAM) on fluores-
cence intensity of N3-Pro tagged foetal ovine osteoblasts. N3-Pro tagged
foetal ovine osteoblasts were treated with 5 mM IAM for 60 min prior to
staining with the DIBO probe. Results are normalized to the corresponding
negative controls (cells cultured in the absence of N3-Pro).
929–958.
¨
2 K. Gelse, E. Poschl and T. Aigner, Adv. Drug Delivery Rev., 2003, 55,
1531–1546.
3 K. Smith and M. J. Rennie, Curr. Opin. Clin. Nutr. Metab. Care, 2007,
10, 582–590.
4 D. Skovgaard, A. Kjaer, K. M. Heinemeier, M. Brandt-Larsen,
J. Madsen and M. Kjaer, PLoS One, 2011, 6, e16678.
5 W. Y. Chow, R. Rajan, K. H. Muller, D. G. Reid, J. N. Skepper,
W. C. Wong, R. A. Brooks, M. Green, D. Bihan, R. W. Farndale,
D. A. Slatter, C. M. Shanahan and M. J. Duer, Science, 2014, 344,
742–746.
6 S. L. Friedman, D. Sheppard, J. S. Duffield and S. Violette, Sci. Transl.
Med., 2013, 5, 167sr161.
7 D. M. Gilkes, G. L. Semenza and D. Wirtz, Nat. Rev. Cancer, 2014, 14,
430–439.
8 M. Grammel and H. C. Hang, Nat. Chem. Biol., 2013, 9, 475–484.
9 K. Lang and J. W. Chin, Chem. Rev., 2014, 114, 4764–4806.
10 S. T. Laughlin and C. R. Bertozzi, Proc. Natl. Acad. Sci. U. S. A., 2009,
106, 12–17.
11 R. N. Hannoush and N. Arenas-Ramirez, ACS Chem. Biol., 2009, 4,
581–587.
12 K. E. Beatty, Mol. BioSyst., 2011, 7, 2360–2367.
13 D. C. Dieterich, A. J. Link, J. Graumann, D. A. Tirrell and
E. M. Schuman, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 9482–9487.
14 K. E. Beatty, J. C. Liu, F. Xie, D. C. Dieterich, E. M. Schuman,
Q. Wang and D. A. Tirrell, Angew. Chem., Int. Ed., 2006, 45,
7364–7367.
Fig. 4 Scanning electron microscopy of foetal ovine osteoblasts cultured
in the presence of 36 mg LÀ1 of N3-Pro. Left: foetal ovine osteoblasts
integrity is adequate, one cell (white arrow) shows damage of the cell
membrane and its nucleus is visible. The other cells show membrane
extensions typical for cells in culture. Right: view of cells and ECM fibers
which are primarily collagen. Scale bars represent 20 mm.
labelling using a SPAAC strategy in live foetal ovine osteoblasts. Our
data provides proof of principle for the use of proline derivatives
equipped with orthogonal handles, such as the azide here reported,
to tag and label collagen structures. The azide derivative was
successfully incorporated and labelled with the fluorescent probe
DIBO. Although our approach suffered from unspecific reaction of
the strained alkyne DIBO with sulfhydryl rich proteins such as actin
or albumin, this was partially prevented by pre-incubation with
IAM. We are now exploring the incorporation of prolines equipped
with different handles that would allow a more efficient bioortho-
gonal labelling of collagen.
15 M. Grammel, P. D. Dossa, E. Taylor-Salmon and H. C. Hang, Chem.
Commun., 2012, 48, 1473–1474.
16 R. S. Erdmann and H. Wennemers, J. Am. Chem. Soc., 2010, 132,
13957–13959.
17 R. S. Erdmann and H. Wennemers, Org. Biomol. Chem., 2012, 10,
1982–1986.
18 R. S. Erdmann and H. Wennemers, Bioorg. Med. Chem., 2013, 21,
3565–3568.
19 M. D. Shoulders, K. A. Satyshur, K. T. Forest and R. T. Raines,
Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 559–564.
20 X. Ning, J. Guo, M. A. Wolfert and G.-J. Boons, Angew. Chem., Int. Ed.,
2008, 47, 2253–2255.
21 P. Torricelli, M. Fini, G. Giavaresi and R. Giardino, Artif. Cells, Blood
Substitutes, Immobilization Biotechnol., 2003, 31, 263–277.
22 J. Dommerholt, S. Schmidt, R. Temming, L. J. A. Hendriks, F. P. J. T.
Rutjes, J. C. M. van Hest, D. J. Lefeber, P. Friedl and F. L. van Delft,
Angew. Chem., Int. Ed., 2010, 49, 9422–9425.
Our strategy could be particularly useful for the diagnosis and
monitoring of pathogenic accumulations of ECM. The develop-
ment of new therapies for fibrotic diseases (e.g. cirrhosis or 23 P. V. Chang, J. A. Prescher, E. M. Sletten, J. M. Baskin, I. A. Miller,
N. J. Agard, A. Lo and C. R. Bertozzi, Proc. Natl. Acad. Sci. U. S. A.,
2010, 107, 1821–1826.
24 R. van Geel, G. J. M. Pruijn, F. L. van Delft and W. C. Boelens,
idiopathic pulmonary fibrosis characterized by excessive deposi-
tion of collagen) has been impeded by difficulties in assessing
efficacy, since sensitive biomarkers of fibrogenesis/fibrolysis,
Bioconjugate Chem., 2012, 23, 392–398.
5252 | Chem. Commun., 2015, 51, 5250--5252
This journal is ©The Royal Society of Chemistry 2015