(c) Tomashenko, O. A.; Escudero-Adan, E. C.; Belmonte, M. M.;
Grushin, V. V. Angew. Chem. Int. Ed. 50 (2011) 7655-7659;
(d) Dobele, M.; Wiehn, M. S.; Brase, S. Angew. Chem., Int. Ed. 50
(2011) 11533-11535;
(e) I. Popov, S. Lindeman and O. Daugulis. J. Am. Chem. Soc. 2011,
133, 9286-9289;
O
2 e
-
N
H
2 e
N
-
1a
2 H
Na
CF3SO2
- e-, -H
O
+
(f) Samant, B. S.; Kabalka, G. W. Chem. Commun. 47 (2011) 7236-
7238.
2 e
-
N
H2
CF3
N
A
[4] For selected examples, see: (a) Choi, J.; Wang, D. Y.; Kundu, S.; Choliy,
Y.; Emge, T. J.; Krogh-Jespersen, K.; Goldman, A. Science 332 (2011)
1545-1548;
O
(b) Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Science
334 (2011) 1681-1684;
(c) Chu, L.; Qing. F.-L. Org. Lett. 12 (2010) 5060-5063;
(d) Senecal, T. D.; Parsons, A. T.; Buchwald, S. L. J. Org. Chem. 76
(2011) 1174-1176;
O
O
PT
N
N
N
H
CF3
H
N
N
N
CF3
B
3a
C
Scheme 3. Plausible mechanism of trifluoromethylation
(e) Novak, P.; Lishchynskyi, A.; Grushin, V. V. Angew. Chem., Int. Ed.
51 (2012) 7767-7770;
(f) Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 134 (2012) 9034-9037;
Initially, CF3SO2Na was transformed into the CF3 radical
through oxidation at the anode. Next, 1a was oxidized into
intermediate A through deprotonation at the anode. After
which, B was formed via resonance from A. Then, species C
was obtained by radical coupling between the CF3 radical and
B. Finally, the desired product 3a was generated through a
proton-transfer (PT) process.
[5] For selected examples, see: (a) Rao, Y.; Shan, G.; Yang, X. L. Sci. China
Chem. 57 (2014) 930-944;
(b) Huang, Z. X.; Lim, H. N.; Mo, F. Y.; Young, M. C.; Dong, G. B.
Chem. Soc. Rev. 44 (2015) 7764-7786;
(c) Song, B. R.; Xu. B. Chem. Soc. Rev. 46 (2017) 1103-1123;
(d) Yu, C. J.; Sanjose´-Orduna, J. F.; Patureau, W.; Pe´rez-Temprano,
M. H. Chem. Soc. Rev. 49 (2020) 1643-1652;
(e) Seregin, I. V.; Gevorgyan. V. Chem. Soc. Rev. 36 (2007) 1173-1193;
(f) Topczewski, J. J.; Sanford, M. S. Chem. Sci. 312 (2006) 67-72;
(g) Y. Wei, P. Hu, M. Zhang, W. P. Su. Chem. Rev. 2017, 117,
8864−8907.
Conclusion
In summary, we have developed an efficient and practical
protocol for the electrochemical ortho-trifluoromethylation of
anilines under transition metal-free and oxidant-free conditions.
This electrochemical method tolerated a broad substrate scope
and the expected products were obtained in moderate to good
yields. Primary investigation demonstrated that a radical
mechanism was involved.
[6] For selected examples, see: (a) F. Pan, Z. J Shi, Acta Chim. Sinica 2012,
70, 1679-1681;
(b) Shang, M.; Sun, S. Z.; Wang, H. L.; Laforteza, B. N.; Dai, H. X.;
Yu, J. Q. Angew. Chem. Int. Ed. 53 (2014) 10439-10442;
(c) Chu, L.; Qing. F. L. Angew. Chem. Int. Ed. 52 (2013) 2198-2202;
(d) Li, Y.; Wu, L.; Neumann, H.; Beller. M. Chem. Commun. 49 (2013)
2628-2630;
Acknowledgements
(e) Lundgren, R. J.; Stradiotto. M. Angew. Chem. Int. Ed. 49 (2010)
9322-9324;
This work was supported by the National Natural Science
Foundation of China, NSFC (No. 21978273 and 21576239)
and National Key R&D Program of China (No.
2018YFC0214100).
(f) Wang, X.; Xu, Y.; Mo, F.; Ji, G.; Qiu, D.; Feng, J.; Ye, Y.; Zhang,
S.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 135 (2013) 10330-10333;
[7] (a) Wang, X.; Truesdale, L.; Yu, J.-Q. J. Am. Chem. Soc. 132 (2010)
3648-3649;
(b) Zhang, L. S.; Chen, K.; Chen, G.; Li, B. J.; Luo, S.; Guo, Q. Y.; Wei,
J. B.; Shi, Z. J. Org. Lett. 15 (2013) 10-13;
(c) Cai, S. J.; Chen, C.; Sun, Z. L.; Xi, C. J. Chem. Commun. 49 (2013)
4552-4554.
Supplementary data
Supplementary data associated with this article can be found, in
the online version, at https://
[8] For recent reviews, see: (a) Ma, J.-A.; Cahard, D.; Chem. Rev. 104 (2004)
6119-6146;
References
(b) Shimizu, M.; Hiyama, T. Angew. Chem. 117 (2005) 218-234;
Angew. Chem. Int. Ed. 44 (2005) 214-231;
(c) Ma, J.-A.; Cahard. D.; J. Fluorine Chem. 128 (2007) 975-996;
(d) Shibata, N.; Mizuta, S.; Toru. T.; J. Synth. Org. Chem. Jpn. 66 (2008)
215-228;
[1] (a) Schlosser. M.; Angew. Chem. Int. Ed. 45 (2006) 5432-5446;
(b) Wang, J.; Sánchez-Roselló, Aceña, M.; J. L.; Pozo, C.; Sorochinsky,
A. E.; Fustero, S.; V. A. Soloshonok, H. Liu. Chem. Rev. 114 (2014)
2432-2506;
(c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur. V. Chem. Soc. Rev.
37 (2008) 320-330;
(e) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 473 (2011) 470-477;
(f) Liu, H.; Gu, Z.; Jiang, X. Adv. Synth. Catal. 355 (2013) 617-626.
(d) Kirk. K. L. Org. Process Re. Dev. 12 (2008) 305-321;
(e) Müller, K.; Faeh, C.; Diederich. F. Science 317 (2007) 1881-1886;
(f) Hagmann. W. K.; J. Med. Chem. 51 (2008) 4359-4369;
[9] For selected examples, see: (a) Xu, J.; Fu, Y.; Luo, D.-F.; Jiang, Y.-Y.;
Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Liu, L. J. Am. Chem. Soc. 133 (2011)
15300-15303;
(b) Yasu, Y.; Koike, T.; Akita. M. Angew. Chem., Int. Ed. 51 (2012)
9567-9571;
(c) Koike, T.; Akita. M.; Acc. Chem. Res. 49 (2016) 1937-1945;
(d) Yasu, Y.; Koike, T.; Akita. M. Org. Lett. 15 (2013) 2136-2139;
(e) Dagousset, G.; Carboni, A.; Magnier, E.; Masson. G. Org. Lett. 16
(2014) 4340-4343.
[2] (a) Nie, J.; Guo, H. C.; Cahard, D.; Ma. J. A.; Chem. Rev. 111 (2011)
455-529;
(b) Yang, X. Y.; Wu, T.; Phipps, R. J.; Toste. F. D. Chem. Rev. 115
(2015) 826-870;
(c) Furuya, T.; Kamlet,; A. Ritter, S. T. Nature 473 (2011) 470-477;
(d) Jeschke, P. ChemBioChem 5 (2004) 570-589.
[10] For selected examples, see: (a) Parsons, A. T.; Buchwald, S. L. Angew.
Chem. 123 (2011) 9286-9289; Angew. Chem. Int. Ed. 50 (2011) 9120-
9123;
[3] (a) Marhold,; A. Klauke. E.; J. Fluorine Chem. 18 (1981) 281-291;
(b) Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.;
Buchwald, S. L. Science 328 (2010) 1679-1681;
(b) Wang, X.; Ye, Y.; Zhang, S.; Feng, J.; Xu, Y.; Zhang, Y.; Wang, J.
J. Am. Chem. Soc. 133 (2011) 16410-16413;