Chemistry - An Asian Journal
10.1002/asia.201600640
[a] Reaction conditions: catalyst 3 (301.20 mg, 5.0 μmol of cinchona alkaloid 5.0%, based on TG analysis), trifluoromethylated enones (1.0 mmol) and Cs2CO3 (1.20 mmol, 1.2
equiv) in 20.0 mL (0.017 M) of methyl tert-butyl ether (MTBE) were added hydrazine (1.2 mmol, 1.2 equiv) at ambient temperature (25 °C). The mixture was then stirred at room
temperature (25 °C) under air atmosphere for 6 h. [b] Determined by chiral HPLC analysis (see SI in Figure S6).
[1] a) J. Nie, H. C. Guo, D. Cahard, J. A. Ma, Chem. Rev. 2011, 111, 455; b) T. Billard,
Chem. Eur. J. 2006, 12, 974; c) J. A. Ma, D. Cahard, Chem. Rev. 2004, 104,
Conclusion
6119; d) D. A. Nagib, M. E. Scott, D. W. C. MacMillan, J. Am. Chem. Soc. 2009,
131, 10875; e) A. E. Allen, D. W. C. MacMillan, J. Am. Chem. Soc. 2010, 132,
In conclusions, we develop an ethylene-bridged chiral
cinchona-functionalized mesoporous silica, which enables an
efficiently epoxidation-relay-reduction, converting achiral β-
trifluoromethyl-β,β-disubstituted enones to chiral β-
4986; f) P. V. Pham, D. A. Nagib, D. W. C. MacMillan, Angew. Chem. 2011,
123, 6243; Angew. Chem. Int. Ed. 2011, 50, 6119; g) T. Furukawa, T. Nishimine,
E. Tokunaga, K. Hasegawa, M. Shiro, N. Shibata, Org. Lett. 2011, 13, 3972; h)
V. Matoušek, A. Togni, V. Bizet, D. Cahard, Org. Lett. 2011, 13, 5762.
trifluoromethyl-β-hydroxy ketones with up to 99% ee and
more than 99% enantiospecificity. As presented in this study,
[2]
[3]
C. Benhaim, L. Bouchard, G. Pelletier, J. Sellstedt, L. Kristofova, S. Daigneault,
hydrophobic periodic mesoporous organosilica, uniformly
distributed active species, and confined cinchona alkaloid
catalytic nature are responsible for its highly catalytic
performance. Furthermore, the heterogeneous catalyst could
also be recovered easily and reused repeatedly eight times
without obvious effect on its reactivity in the enantioselective
epoxidation of 4,4,4-trifluoro-1,3-diphenylbut-2-enonee,
affording a practical approach for construction of valuable
chiral β-CF3-substituted molecules.
Org. Lett. 2010, 12, 2008.
a) Y. Tsuchiya, Y. Hamashima, M. Sodeoka, Org. Lett. 2006, 8, 4851; b) T.
Konno, T. Tanaka, T. Miyabe, A. Morigaki, T. Ishihara, Tetrahedron Lett. 2008,
49, 2106.
[4]
[5]
V. Bizet, X. Pannecoucke, J. L. Renaud, D. Cahard, Angew. Chem. Int. Ed.
2012, 51, 6467.
a) H. Kawai, S. Okusu, Z. Yuan, E. Tokunaga, A. Yamano, M. Shiro, N.
Shibata, Angew. Chem. Int. Ed. 2013, 52, 2221; b) S. X. Wu, D. Pan, C. Y. Cao,
Q. Wang, F. X. Chen, Adv. Synth. Catal.,2013, 355, 1917.
Experimental Section
[6]
a) Y. Chu, X. Liu,W. Li, X. Hu, L. Lin, X. Feng, Chem. Sci. 2012, 3, 1996; b)
W. Adam, P. B. Rao, H. G. Degen, C. R. Saha-Möller, Eur. J. Org. Chem. 2002,
630; c) Y. Nishikawa, H. Yamamoto, J. Am. Chem. Soc. 2011, 133, 8432; d) Y.
Huang, E. Tokunaga, S. Suzuki, M. Shiro, N. Shibata, Org. Lett. 2010, 12, 1136;
e) W. Wang, X. Lian, D. Chen, X. Liu, L. Lin, X. Feng, Chem. Commun. 2011,
47, 7821; f) N. Shinohara, J. Haga, T. Yamazaki, T. Kitazume, S. Nakamura, J.
Org. Chem. 1995, 60, 4363; g) V. A. Soloshonok, D. V. Avilov, V. P. Kukhar,
L. V. Meervelt, N. Mischenko, Tetrahedron Lett. 1997, 38, 4903; h) T. Konno,
H. Nakano, T. Kitazume, J. Fluorine Chem. 1997, 86, 81; i) T. Konno, T.
Ishihara, H. Yamanaka, Tetrahedron Lett. 2000, 41, 8467; j) T. Yamazaki, N.
Shinohara, T. Kitazume, S. Sato, J. Org. Chem. 1995, 60, 8140.
Preparation of the heterogeneous Catalyst 3. In a typical synthesis, a dry 50 mL
round-bottom flask was charged with SH@Et@MNPs (1) (0.50 g), chiral cinchona
alkaloid (2) (309.0 mg, 0.50 mmol), and 2.0 mol% of 2,2-dimethoxy-1,2-
diphenylethanone photoinitiator, backfilled with argon, and irradiated for 27 h with a 15
W blacklight (λmax = 365 nm). The resulting solid was filtered through filter paper and
rinsed with excess methanol and dichloromethane. After Soxlet extraction in
dichloromethane solvent for 12 h to remove any homogeneous and unreacted starting
materials, the solid was dried overnight at 60ºC under vacuum to afford the
heterogeneous catalyst (3) (0.58 g) as a light−yellow powder. IR (KBr) cm−1: 3425.3 (s),
2919.9 (w), 2849.9 (w), 1490.1 (w), 1411.6 (m), 1167.5 (s), 1037.1 (s), 872.7 (m), 767.9
(m), 698.3 (m), 445.5 (m). 13C CP MAS NMR (161.9 MHz): 162.1−112.2 (C of Ar, Ph
and CF3), 73.2−49.0 (C of cyclic alkyl groups in cycling group connected to N atom, of
–CHOH, and of –OCH3, and C of –NCH2 and –NCH3 in CTAB molecule), 46.5-31.2 (C
of –SCH2CH2CH2Si, and of –CH2CH2CH2NCH3), 23.5 (C of –SCH2CH2CH2Si, of –
CH2CH2CH2–, and of cyclic alkyl groups in cycling group without connected to N atom
in CTAB molecule), 13.3 (13.4 (C of −CH2CH3 in CTAB molecule), 5.9 (C of −CH2Si)
ppm. 29Si MAS/NMR (79.4 MHz): T2 (δ = −59.5 ppm), T3 (δ = −67.2 ppm). Elemental
analysis (%): C 18.15, H 2.83, N 0.56, S 0.88.
[7]
[8]
a) Y. Zheng, H. Y. Xiong, J. Nie, M. Q. Hua, J. A. Ma, Chem. Commun. 2012,
48, 4308; b) H. Kawai, S. Okusu, E. Tokunaga, N. Shibata, Eur. J. Org. Chem.
2013, 6506.
a) J. T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc. 1980, 102, 5974; b) O. A.
Wong, Y. Shi, Chem. Rev. 2008, 108, 3958; c) E. M. McGarrigle, D. G.
Gilheany, Chem. Rev. 2005, 105, 1563; d) Q.-H. Xia, H.-Q. Ge, C.-P. Ye, Z.-M.
Liu, K.-X. Su, Chem. Rev. 2005, 105, 1603; e) B. S. Lane, K. Burgess, Chem.
Rev. 2003, 103, 2457; f) Y. G. Zhu, Q. Wang, R. G. Cornwall, Y. Shi, Chem.
Rev. 2014, 114, 8199.
General procedure for the enantioselective epoxidation-relay-reduction of β-
trifluoromethyl-β,β-disubstituted enones. A typical procedure was as follows: To a
stirred suspension of catalyst 3 (30.12 mg, 5.0 μmol of cinchona alkaloid 5.0%, based
on TG analysis), trifluoromethylated enones (0.10 mmol) and Cs2CO3 (39.10 mg, 0.12
mmol, 1.2 equiv) in 5.0 mL (0.017 M) of methyl tert-butyl ether (MTBE) were added
hydrazine (6.5 μL, 0.12 mmol, 1.2 equiv) at ambient temperature (25 °C). The mixture
was then stirred at the same temperature under air atmosphere for 6-18 h. During this
period, the reaction was monitored constantly by TLC. When the reaction was
completed, catalyst was separated by centrifugation (10,000 rpm) for the recycling
experiment. Aqueous solution was added Zn (13.0 mg, 0.2 mmol, 2 equiv) and NH4Cl
(8.0 mg, 0.15 mmol, 1.5 equiv) in 1.0 mL of EtOH, and the mixture was stirred at 40 °C
for 2 h. The reaction was then quenched with water. Aqueous layer was extracted with
ethyl ether (3 × 3.0 mL). The combined ethyl ether extracts were washed with NaHCO3
and brine, and then dehydrated with Na2SO4. After evaporation of ethyl ether, the
residue was purified by silica gel flash column chromatography to afford the desired
product. The yields were determined by 1H-NMR, and the ee values were determined by
a HPLC analysis using a UV-Vis detector and a Daicel chiralcel column (Φ 0.46 × 25
cm).
[9]
a) N. Mizoshita, T. Tani, S. Inagaki, Chem. Soc. Rev. 2011, 40, 789; b) F.
Hoffmann, M, Fröba, Chem. Soc. Rev. 2011, 40, 608; c) A. Thomas, Angew.
Chem. Int. Ed. 2010, 49, 8328; d) F. Hoffmann, M. Cornelius, J. Morell, M.
Fröba, Angew. Chem. Int. Ed. 2006, 45, 3216; e) M. Kruk, Acc. Chem. Res.
2012, 45, 1678; f) J. A. Melero, R. van Grieken, G. Morales, Chem. Rev. 2006,
106, 3790; g) Q. Yang, J. Liu, L. Zhang, C. Li, J. Mater. Chem. 2009, 19, 1945;
h) P. Van Der Voort, D. Esquivel, E. De Canck, F. Goethals, I. Van Driessche,
F. J. Romero-Salguero, Chem. Soc. Rev. 2013, 42, 3913; i) J. L. Huang, F. X.
Zhu, W. H. He, F. Zhang, W. Wang, H. X. Li, J. Am. Chem. Soc. 2010, 132,
1492. (a) H. Zou, S. S. Wu, J, Shen, Chem. Rev. 2008, 108, 3893; b) S.
Minakata, M. Komatsu, Chem. Rev. 2009, 109, 711.
Acknowledgements
[10] a) X. S. Gao, R. Liu, D. C. Zhang, M. Wu, T. Y. Cheng, G. H. Liu, Chem. Eur.
J. 2014, 20, 1515; b) R. Liu, R. H. Jin, J. Z. An, Q. K. Zhao, T. Y. Cheng, G. H.
Liu, Chem. Asian. J. 2014, 9, 1388.
We are grateful to China National Natural Science Foundation (21402120), Shanghai
Sciences and Technologies Development Fund (13ZR1458700), CSIRT (IRT1269) and
Shanghai Municipal Education Commission (14YZ074) for financial supports.
[11] a) C. Chen, L. Y. Kong, T. Y. Cheng, R. H. Jin, G. H. Liu, Chem. Commun.
6