Communication
ChemComm
Notes and references
1 (a) N. Heldring, A. Pike, S. Andersson, J. Matthews, G. Cheng,
J. Hartman, M. Tujague, A. Strom, E. Treuter, M. Warner and J. A.
Gustafsson, Physiol. Rev., 2007, 87, 905–931; (b) J. A. Gustafsson,
Trends Pharmacol. Sci., 2003, 24, 479.
2 (a) M. Jeltsch, A. Staub, E. Jensen, G. Scrace and M. Waterfield, et al.,
Proc. Natl. Acad. Sci. U. S. A., 1985, 82, 7889–7893; (b) G. G. Kuiper,
E. Enmark, M. Pelto-Huikko, S. Nilsson and J. A. Gustafsson, Proc.
Natl. Acad. Sci. U. S. A., 1996, 93, 5925–5930; (c) J. C. Nwachukwu,
S. Srinivasan, Y. Zheng, S. Wang, J. Min, C. Dong, Z. Liao, J. Nowak,
N. J. Wright, R. Houtman, K. E. Carlson, J. S. Josan, O. Elemento,
J. A. Katzenellenbogen, H. B. Zhou and K. W. Nettles, Mol. Syst. Biol.,
2016, 12, 864; (d) K. Dahlman-Wright, V. Cavailles, S. A. Fuqua,
V. C. Jordan, J. A. Katzenellenbogen, K. S. Korach, A. Maggi,
M. Muramatsu, M. G. Parker and J. A. Gustafsson, Pharmacol.
Rev., 2006, 58, 773–781.
Fig. 2 Models of benzofuranone compounds bound to ERa and ERb. (A) A
computer-developed model of 4f bound to ERa (PDB: 3ERD) with the
conserved H-bond to Arg394; (B) a computer-developed model of 4e
bound to ERb (PDB: 2I0G) with the conserved H-bond to Glu305.
3 R. A. Hess, Reprod. Biol. Endocrinol., 2003, 1, 52.
4 (a) F. Syed and S. Khosla, Biochem. Biophys. Res. Commun., 2005,
328, 688; (b) M. E. Mendelsohn, Am. J. Cardiol., 2002, 89, 12–17.
5 (a) S. A. Beresford, N. S. Weiss, L. F. Voigt and B. McKnight, Lancet,
1997, 349, 458–461; (b) V. C. Jordan, J. Med. Chem., 2003, 46,
1081–1111.
6 (a) F. Minutolo, M. Macchia, B. S. Katzenellenbogen and J. A.
Katzenellenbogen, Med. Res. Rev., 2011, 31, 364; (b) G. Daniela,
S. Ilaria De, P. Maria Grazia, S. Giovanni and F. Gabriella, Curr.
Pharm. Des., 2012, 18, 2734–2757; (c) L. Zhao, J. Yao, Z. Mao, S. Chen,
Y. Wang and R. D. Brinton, Neurobiol. Aging, 2011, 32, 1949–1963.
7 A. C. W. Pike, A. M. Brzozowski, R. E. Hubbard, T. Bonn,
compound with the key residues, Glu305 in helix 6, are evident,
as is required for the full activation of the receptor. From the
computer-developed model of 4e bound to ERb, it was observed
that there are 20 amino acid residues in the lipophilic pocket
within the distance of 5 Å, which indicated the presence of van
der Waals interactions with ligand 4e. It appears that most of
the binding energy comes from the hydrophobic van der Waals
interactions within the lipophilic pocket.18 This is probably the
reason why compound 4e is the most ERb selective and has a
highest ERb/ERa ratio of 192 in the series (Fig. 2B).
In conclusion, we designed and synthesized a series of 3,3-
diaryl benzofuranone derivatives as potential ERb selective
modulators, and the structure of the target compounds was
unambiguously identified by X-ray crystallography analysis.
Among them, the compound 4e was confirmed as a highly
selective ERb ligand with an ERb/ERa selectivity to 192. In
addition, several compounds showed good anti-proliferative
activities in ERb overexpressed DU-145 metastatic prostate
cancer cells and U-87 glioma cells. These results indicate that
the benzofuranone skeleton had great potential in the diversity-
oriented drug discovery for estrogen receptors.
¨
A. G. Thorsell, O. Engstrom, J. Ljunggren, J. Å. Gustafsson and
M. Carlquist, EMBO J., 1999, 18, 4608–4618.
8 V. C. Jordan, J. Med. Chem., 2003, 46, 883–908.
9 G. G. Kuiper, B. Carlsson, K. Grandien, E. Enmark, J. Haggblad,
S. Nilsson and J. A. Gustafsson, Endocrinology, 1997, 138, 863–870.
10 M. S. Malamas, E. S. Manas, R. E. McDevitt, I. Gunawan, Z. B. Xu,
M. D. Collini, C. P. Miller, T. Dinh, R. A. Henderson, J. C. Keith and
H. A. Harris, J. Med. Chem., 2004, 47, 5021–5040.
11 M. De Angelis, F. Stossi, K. A. Carlson, B. S. Katzenellenbogen and
J. A. Katzenellenbogen, J. Med. Chem., 2005, 48, 1132.
12 Z. Hu, L. Yang, W. Ning, C. Tang, Q. Meng, J. Zheng, C. Dong and
H. B. Zhou, Chem. Commun., 2018, 54, 3887–3890.
13 (a) J. Min, P. C. Wang, S. Srinivasan, J. C. Nwachukw, P. Guo,
M. J. Huang, K. E. Carlson, J. A. Katzenellenbogen, K. W. Nettles and
H. B. Zhou, J. Med. Chem., 2013, 56, 3346; (b) S. Zhang, Z. Wang,
Z. Hu, C. Li, C. Tang, K. E. Carlson, J. Luo, C. Dong, J. A.
Katzenellenbogen, J. Huang and H. B. Zhou, ChemMedChem, 2017,
12, 235–249.
14 (a) Y. Liu, C. Zhou, M. Xiong, J. Jiang and J. Wang, Org. Lett., 2018,
20, 5889–5893; (b) W. Randal Erickson and M. J. McKennon, Tetra-
hedron Lett., 2000, 41, 4541–4544.
15 X.-F. Cheng, Y. Li, Y.-M. Su, F. Yin, J.-Y. Wang, J. Sheng, H. U. Vora,
X.-S. Wang and J.-Q. Yu, J. Am. Chem. Soc., 2013, 135, 1236–1239.
16 (a) B. J. Morrison and O. C. Musgrave, Tetrahedron, 2002, 58,
4255–4260; (b) L. Chen, F. Zhou, T.-D. Shi and J. Zhou, J. Org. Chem.,
2012, 77, 4354–4362.
We are grateful to the NSFC (81773557, 81573279 and
81373255), Major Project of Technology Innovation Program
of Hubei Province (2016ACA126), NSFHP (2017CFA024), and
the Seed Funds for International Joint Research Platform of
Wuhan University (KYPT-ZD-9) for support of this research.
17 C. Tang, C. Li, S. Zhang, Z. Hu, J. Wu, C. Dong, J. Huang and
H.-B. Zhou, J. Med. Chem., 2015, 58, 4550–4572.
18 E. S. Manas, R. J. Unwalla, Z. B. Xu, M. S. Malamas, C. P. Miller,
H. A. Harris, C. Hsiao, T. Akopian, W.-T. Hum, K. Malakian,
S. Wolfrom, A. Bapat, R. A. Bhat, M. L. Stahl, W. S. Somers and
J. C. Alvarez, J. Am. Chem. Soc., 2004, 126, 15106–15119.
Conflicts of interest
There are no conflicts to declare.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 14570--14573 | 14573