Journal of the American Chemical Society
Page 4 of 5
Design for Biopharmaceutical Applications; Jensen, K. J., Eds.; John
Wiley & Sons, Ltd: Cambridge, 2009, pp 49. (g) Alfonso, I. Chem.
Commun. 2016, 52, 239.
(3) Avan, I.; Hall, C. D.; Katritzky, A. R. Chem. Soc. Rev. 2014, 43,
3575.
(4) (a) Valverde I. E.; Lecaille, F.; Lalmanach, G.; Aucagne, V.; Delꢀ
mas, A. F. Angew. Chem. Int. Ed. 2012, 51, 718. (b) Tischler, M.; Nasu,
D.; Empting, M.; Schmelz, S.; Heinz, D. W.; Rottmann, P.; Kolmar, H.;
Buntkowsky, G.; Tietze, D.; Avrutina, O. Angew. Chem. Int. Ed. 2012, 51,
3708.
Figure 5. (A) Polarizing microscopic image of the crystals of
dipeptide 1 (A) before and (B) after TAAC. (C) Timeꢀdependent
PXRD spectra of crystals of dipeptide 1 kept at 85 °C for various
durations. (D) Plausible rotation of alkyne and azide giving TSꢀ
likeꢀarrangement for 1,4ꢀregioisomer.
1
2
3
4
5
6
7
8
In summary, we have designed a dipeptide, decorated with two
complementary reacting motifs viz. azide and alkyne, which can
selfꢀassemble to form βꢀsheet structures in its crystal with proxiꢀ
mally placed azide and alkyne from adjacent sheets. The crystals
of this modified dipeptide underwent smooth topochemical azideꢀ
alkyne cycloaddition reaction upon heating yielding triazoleꢀ
linked polypeptides, which are otherwise difficult to synthesize
using conventional solution phase reactions. Though the azide and
alkyne were not properly oriented, for the topochemical reaction,
in the crystal, the flexibility of the propargyl and azide groups and
the empty space around them allowed their rotation, which lead to
a transition stateꢀlike antiꢀparallel arrangement of azide and alꢀ
kyne at short distance and this lead to the regiospecific formation
of 1,4ꢀtriazolylꢀlinked polypeptide in a crystalꢀtoꢀcrystal fashion.
This is the first synthesis of pseudoprotein or pseudopolypeptide
in the solid state. This proofꢀofꢀconcept would generate interests
in topochemical synthesis of several pseudopolypeptides with
repeating sequences for various applications.
(5) Holub, J. M.; Kirshenbaum, K. Chem. Soc. Rev. 2010, 39, 1325.
(6) (a) Schmidt, G. M. J. Pure Appl. Chem. 1971, 27, 647. (b) Lauher,
J. W.; Fowler, F. W.; Goroff, N. S. Acc. Chem. Res. 2008, 41, 1215. (c)
GarciaꢀGaribay, M. A. Acc. Chem. Res. 2003, 36, 491. (d) Ramamurthy,
V.; Venkatesan, K. Chem. Rev. 1987, 87, 433. (e) Tanaka, K.; Toda, F.
Chem. Rev. 2000, 100, 1025. (f) Biradha, K.; Santra, R. Chem. Soc. Rev.
2013, 42, 950. (g) Hasegawa, M. Chem. Rev. 1983, 83, 507. (h) Hsu, T.ꢀJ.;
Fowler, F. W.; Lauher, J. W. J. Am. Chem. Soc. 2012, 134, 142. (i)
Nomura, S.; Itoh, T.; Ohtake, M.; Uno, T.; Kubo, M.; Kajiwara, A.; Sada,
K.; Miyata, M. Angew. Chem. Int. Ed. 2003, 42, 5468. (j) Sun, A.; Lauher,
J.W.; Goroff, N. S. Science 2006, 312, 1030. (k) Wegner, G. Die Makro.
Chem. 1972, 154, 35. (l) Xu, R.; Gramlich, V.; Frauenrath, H. J. Am.
Chem. Soc. 2006, 128, 5541. (m) Jahnke, E.; Lieberwirth, I.; Severin, N.;
Rabe, J. P.; Frauenrath, H. Angew. Chem. Int. Ed. 2006, 45, 5383. (n) Li,
Z.; Fowler, F. W.; Lauher, J. W. J. Am. Chem. Soc. 2009, 131, 634. (o)
Xu, Y.; Smith, M. D.; Geer, M. F.; Pellechia, P. J.; Brown, J. C.; Wibowo,
A. C.; Shimizu, L. S. J. Am. Chem. Soc. 2010, 132, 5334. (p) Itoh, T.;
Suzuki, T.; Uno, T.; Kubo, M.; Tohnai, N.; Miyata, M. Angew. Chem. Int.
Ed. 2011, 50, 2253. (q) Oshita, S.; Matsumoto, A. Chem. Eur. J. 2006, 12,
2139. (r) Matsumoto, A.; Sada, K.; Tashiro, K.; Miyata, M.; Tsubouchi,
T.; Tanaka, T.; Odani, T.; Nagahama, S.; Tanaka, T.; Inoue, K.; Saragai,
S.; Nakamoto, S. Angew. Chem. Int. Ed. 2002, 41, 2502. (s) Hoang, T.;
Lauher, J. W.; Fowler, F. W. J. Am. Chem. Soc. 2002, 124, 10656. (t)
Nagahama, S.; Tanaka, T.; Matsumoto, A. Angew. Chem. Int. Ed. 2004,
43, 3811. (u) Xu, R.; Schweizer, W. B.; Frauenrath, H. Chem. Eur. J.
2009, 15, 9105. (v) Xiao, J.; Yang, M.; Lauher, J. W.; Fowler, F. W.
Angew. Chem. Int. Ed. 2000, 39, 2132. (w) Hoheisel, T. N.; Schrettl, S.;
Marty, R.; Todorova, T. K.; Corminboeuf, C.; Sienkiewicz, A.; Scopelliti,
R.; Schweizer, W. B.; Frauenrath, H. Nat. Chem. 2013, 5, 327. (x) Itoh,
T.; Nomura, S.; Nakasho, H.; Uno, T.; Kubo, M.; Tohnai, N.; Miyata, M.
Macromolecules 2015, 48, 5450. (y) Okaniwa, M.; Oaki, Y.; Kaneko, S.;
Ishida, K.; Maki, H.; Imai, H. Chem. Mater. 2015, 27, 2627. (z) Jin, H.;
Young, C. N.; Halada, G. P.; Phillips, B. L.; Goroff, N. S. Angew. Chem.
Int. Ed. 2015, 54, 14690. (aa) Krishnan, B. P.; Mukherjee, S.; Aneesh, P.
M.; Namboothiry, M. A. G.; Sureshan, K. M. Angew. Chem. Int. Ed. 2016,
55, 2345. (ab) Suzuki, M.; Kotyk, J. F. K.; Khan, S.; Rubin, Y. J. Am.
Chem. Soc. 2016, 138, 5939. (ac) Nery, J. G.; Bolbach, G.; Weissbuch, I.;
Lahav, M. Angew. Chem. Int. Ed. 2003, 42, 2157. (ad) Mortko, C. J.;
GarciaꢀGaribay, M. A. J. Am. Chem. Soc. 2005, 127, 7994.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information
Details of synthesis and characterization of dipeptide 1 and oliꢀ
gomer (trimer 9 and tetramer 10), DSC, PXRD, SXRD, IR, NMR,
TGA and MALDIꢀTOF. This material is available free of charge
AUTHOR INFORMATION
Corresponding Author
ACKNOWLEDGMENT
K.M.S. thanks Department of Science and Technology (DST,
India) for Swarnajayanti Fellowship.
REFERENCES
(7) (a) Pathigoolla, A.; Gonnade, R. G.; Sureshan, K. M. Angew. Chem.
Int. Ed. 2012, 51, 4362. (b) Pathigoolla, A.; Sureshan, K. M. Angew.
Chem. Int. Ed. 2014, 53, 9522. (c) Pathigoolla, A.; Sureshan, K. M. An-
gew. Chem. Int. Ed. 2013, 52, 8671. (d) Krishnan, B. P.; Ramakrishnan,
S.; Sureshan, K. M. Chem. Commun. 2013, 49, 1494. (e) Pathigoolla, A.;
Sureshan, K. M. Chem. Commun. 2016, 52, 886.
(8) Benaki, D. C.; Aggeli, A.; Chryssikos, G. D.; Yiannopoulos, Y. D.;
Kamitsos, E. I.; Brumley, E.; Case, S. T.; Boden, N.; Hamodrakas, S. J.
Int. J. Biol. Macromolec. 1998, 23, 49.
(9) (a) Albert, K. A.; Walaas, S. I.; Wang, J. K.; Greengard, P. Proc.
Natl. Acad. Sci. USA 1986, 83, 2822. (b) Jacobs, K. A.; Phelps, D. S.;
Steinbrink, R.; Fisch, J.; Kriz, R.; Mitsock, L.; Dougherty, J. P.; Taeusch,
H. W.; Floros, J. J. Biol. Chem. 1987, 262, 9808. (c) Solomon, J. P.;
Yonemoto, I. T.; Murray, A. N.; Price, J. L.; Powers, E. T.; Balch, W. E.;
Kelly, J. W. Biochemistry 2009, 48, 11370. (d) Hanada, K.; Hirano, H.
Biochemistry 2004, 43, 12105.
(1) (a) Peptide Materials: From nanostructures to Applications; Aleꢀ
man, C., Bianco, A., Venanzi, M., Eds.; Wiley VCH: Chichester, U.K.,
2013. (b) Hamley, I. W. Angew. Chem. Int. Ed. 2007, 46, 8128. (c) Hosꢀ
seinkhani, H.; Hong, P.ꢀD.; Yu, D.ꢀS. Chem. Rev. 2013, 113, 4837.
(2) (a) OllerꢀSalvia, B.; SánchezꢀNavarro, M.; Ciudad, S.; Guiu, M,;
ArranzꢀGibert, P.; Garcia, C.; Gomis, R. R.; Cecchelli, R.; García, J.;
Giralt, E.; Teixidó, M. Angew. Chem. Int. Ed. 2016, 55, 572. (b) Babii,
O.; Afonin, S.; Garmanchuk, L. V.; Nikulina, V. V.; Nikolaienko, T. V.;
Storozhuk, O. V.; Shelest, D. V.; Dasyukevich, O. I.; Ostapchenko, L. I.;
Iurchenko, V.; Zozulya, S.; Ulrich, A. S.; Komarov, I. V. Angew. Chem.
Int. Ed. 2016, 55, 5493. (c) Boyden, T.; Niosi, M.; Vaz, A. In Metabolism,
Pharmacokinetics and Toxicity of Functional Groups: Impact of Chemical
Building Blocks on ADMET; Smith, D. A., Eds.; The Royal Society of
Chemistry: London, 2010, pp 370. (d) Tomasini, C.; Castellucci, N. Chem.
Soc. Rev. 2013, 42, 156. (e) Trabocchi, A.; Guarna, A. In Peptidomimetics
in Organic and Medicinal Chemistry; John Wiley
& Sons, Ltd:
Chichester, 2014, pp 19. (f) Maes, V.; Tourwé, D. In Peptide and Protein
ACS Paragon Plus Environment