Inorganic Chemistry
Communication
(h) Vasilikogiannaki, E.; Titilas, I.; Vassilikogiannakis, G.; Stratakis, M.
Chem. Commun. 2015, 51, 2384. (i) Couturier, M.; Andresen, B. M.;
Tucker, J. L.; Dube, P.; Brenek, S. J.; Negri, J. T. Tetrahedron Lett. 2001,
42, 2763. Reductive Amination: (j) Matos, K.; Burkhardt, E. R.
Pharmaceutical Process Chemistry; Wiley-VCH Verlag GmbH & Co.
KGaA: Weinheim, Germany, 2010; p 127. (k) Ramachandran, P. V.;
Gagare, P. D.; Sakavuyi, K.; Clark, P. Tetrahedron Lett. 2010, 51, 3167.
Borenium Chemistry: (l) De Vries, T. S.; Prokofjevs, A.; Vedejs, E.
Chem. Rev. 2012, 112, 4246. B−H Insertion: (m) Cheng, Q.-Q.; Zhu,
S.-F.; Zhang, Y.-Z.; Xie, X.-L.; Zhou, Q.-L. J. Am. Chem. Soc. 2013, 135,
14094. (n) Chen, D.; Zhang, X.; Qi, W.-Y.; Xu, B.; Xu, M.-H. J. Am.
Chem. Soc. 2015, 137, 5268.
(5) (a) Kalidindi, S. B.; Sanyal, U.; Jagirdar, B. R. ChemSusChem 2011,
4, 317. (b) Lidor-Shalev, O.; Zitoun, D. RSC Adv. 2014, 4, 63603.
(6) Sergueeva, Z. A.; Sergueev, D. S.; Shaw, B. R. Nucleosides,
Nucleotides Nucleic Acids 2001, 20, 941.
(7) O’Sullivan, E. J. Fundamental and Practical Aspects of the
Electroless Deposition Reaction. In Advances in Electrochemical Science
and Engineering; Alkire, R. C., Kolb, D. M., Eds.; Wiley-VCH: New York,
2002; p 225.
amines. In addition to the wide substrate scope, the described
amine−ammonium salt equilibrium−metathesis protocol has
several significant benefits: (i) open-flask conditions; (ii) atom-
economical use of stoichiometric ammonium sulfate; (iii) use of
reagent-grade THF; (iv) no tedious purification required beyond
filtration; (v) recovery and recycling of the solvent over multiple
runs. The viability of this convenient preparation of amine−
boranes, demonstrated with a mole-scale synthesis of TEAB
(2a),26 should make them readily available and aid the
advancement of hydrogen energy and propellant research. In
addition, this could also find applications in the potential
synthesis of 1° amineborane-derived borazines.27
ASSOCIATED CONTENT
* Supporting Information
■
S
Representative procedures and characterization data for amine−
boranes. The Supporting Information is available free of charge
(8) Burnham, B. S. Curr. Med. Chem. 2005, 12, 1995.
(9) Ramachandran, P. V.; Kulkarni, A. S.; Pfeil, M. A.; Dennis, J. D.;
Willits, J. D.; Heister, S. D.; Son, S. F.; Pourpoint, T. L. Chem.Eur. J.
2014, 20, 16869.
(10) (a) Clark, J. D. Ignition! An Informal History of Liquid Rocket
Propellants; Rutgers University Press: New Brunswick, NJ, 1972.
(b) Pichon, S.; Catoire, L.; Chaumeix, N.; Paillard, C. J. Propul. Power
2005, 21, 1057.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
(11) (a) Ramachandran, P. V.; Gagare, P. D. Inorg. Chem. 2007, 46,
7810. (b) Ramachandran, P. V.; Mistry, H.; Kulkarni, A. S.; Gagare, P. D.
Dalton Trans. 2014, 43, 16580. (c) Heldebrant, D. J.; Karkamkar, A.;
Linehan, J. C.; Autrey, T. Energy Environ. Sci. 2008, 1, 156. (d) Chen, X.;
Bao, X.; Billet, B.; Shore, S. G.; Zhao, J.-C. Chem.Eur. J. 2012, 18,
11994.
ACKNOWLEDGMENTS
■
Financial assistance from the Herbert C. Brown Center for
Borane Research is gratefully acknowledged. A.S.K. is grateful for
a Purdue Research Foundation fellowship.
(12) AB is a superior alternative to the pyrophoric and moisture-
sensitive borane−methyl sulfide and borane−tetrahydrofuran.
Ramachandran, P. V.; Kulkarni, A. S. RSC Adv. 2014, 4, 26207.
(13) Noth, H.; Beyer, H. Chem. Ber. 1960, 93, 931.
DEDICATION
■
Dedicated to Professor Ei-ichi Negishi on the occasion of his
80th birthday.
(14) Andres, C.; Delgado, M.; Pedrosa, R. Synth. Commun. 1992, 22,
829.
REFERENCES
■
(15) Schaeffer, G.; Anderson, E. J. Am. Chem. Soc. 1949, 71, 2143.
(16) Kikugawa, Y. Chem. Pharm. Bull. 1987, 35, 4988.
(17) Kampel, V.; Warshawsky, A. J. Organomet. Chem. 1994, 469, 15.
(18) Kawase, Y.; Yamagishi, T.; Kutsuma, T.; Zhibao, H.; Yamamoto,
Y.; Kimura, T.; Nakata, T.; Kataoka, T.; Yokomatsu, T. Org. Process Res.
Dev. 2012, 16, 495.
(19) AB synthesis is carried out in 0.165 M THF. See ref 11a.
(20) AB decomposes in refluxing THF. Shaw, W. J.; Linehan, J. C.;
Szymczak, N. K.; Heldebrant, D. J.; Yonker, C.; Camaioni, D. M.; Baker,
R. T.; Autrey, T. Angew. Chem., Int. Ed. 2008, 47, 7493.
(21) Transamination at rt is only 5% complete in 20 h. See ref 12.
(22) Salt−base equilibrium has been described in the literature: Kar, R.
K.; Bera, S. C. J. Photochem. Photobiol. A: Chem. 1991, 56, 195.
(23) The reaction was attempted at 40 °C with prior knowledge of AB
synthesis at this temperature. See ref 11a.
(24) The stability of TEAB allows for its potential use in on-demand
AB production. Sutton, A. D.; Burrell, A. K.; Dixon, D. A.; Garner, E. B.;
Gordon, J. C.; Nakagawa, T.; Ott, K. C.; Robinson, P.; Vasiliu, M. Science
2011, 331, 1426.
(1) (a) Carre-Burritt, A. E.; Davis, B. L.; Rekken, B. D.; Mack, N.;
Semelsberger, T. A. Energy Environ. Sci. 2014, 7, 1653. (b) Muller, K.;
Stark, K.; Muller, B.; Arlt, W. Energy Fuels 2012, 26, 3691. (c) Mal, S. S.;
Stephens, F. H.; Baker, R. T. Chem. Commun. 2011, 47, 2922.
(d) Hamilton, C. W.; Baker, R. T.; Staubitz, A.; Manners, I. Chem. Soc.
Rev. 2009, 38, 279. (e) Staubitz, A.; Robertson, A. P. M.; Manners, I.
Chem. Rev. 2010, 110, 4079.
(2) (a) Baldwin, R. A.; Washburn, R. M. J. Org. Chem. 1961, 26, 3549.
(b) Cowley, A. H.; Mills, J. L. J. Am. Chem. Soc. 1969, 91, 2911.
(c) Budde, W. L.; Hawthorne, M. F. J. Am. Chem. Soc. 1971, 93, 3147.
(d) Brahmi, M. M.; Monot, J.; Desage-El Murr, M.; Curran, D. P.;
Fensterbank, L.; Lacote, E.; Malacria, M. J. Org. Chem. 2010, 75, 6983.
(e) Potter, R. G.; Camaioni, D. M.; Vasiliu, M.; Dixon, D. A. Inorg. Chem.
2010, 49, 10512.
(3) (a) Johnson, H. C.; Hooper, T. N.; Weller, A. S. Synthesis and
Application of Organoboron Compounds. In Topics in Organometallic
Chemistry; Fernandez, E., Whiting, A., Eds.; Springer: Berlin, 2015; Vol.
49, pp 153−220. (b) Vance, J. R.; Schafer, A.; Robertson, A. P. M.; Lee,
K.; Turner, J.; Whittell, G. R.; Manners, I. J. Am. Chem. Soc. 2014, 136,
3048 and references cited therein.
(4) Hydroboration: (a) Kanth, J. V. B. Aldrichimica Acta 2002, 35, 57.
(b) Scheideman, M.; Wang, G.; Vedejs, E. J. Am. Chem. Soc. 2008, 130,
8669. (c) Clay, J. M.; Vedejs, E. J. Am. Chem. Soc. 2005, 127, 5766.
(d) Johnson, H. C.; Torry-Harris, R.; Ortega, L.; Theron, R.; McIndoe, J.
S.; Weller, A. S. Catal. Sci. Technol. 2014, 4, 3486. Reduction and
Hydrogenation: (e) Hutchins, R. O.; Learn, K.; Nazer, B.; Pytlewski, D.;
Pelter, A. Org. Prep. Proced. Int. 1984, 16, 335. (f) Yang, X.; Zhao, L.; Fox,
T.; Wang, Z.-X.; Berke, H. Angew. Chem., Int. Ed. 2010, 49, 2058.
(g) Yang, X.; Fox, T.; Berke, H. Org. Biomol. Chem. 2012, 10, 852.
(25) Pfeil, M. A.; Dennis, J. D.; Son, S. F.; Heister, S. D.; Pourpoint, T.
L.; Ramachandran, P. V. J. Propul. Power 2015, 31, 365.
(26) Caution! Adequate safety precautions should be taken while carrying
out these experiments. Because of the toxic and corrosive nature of ammonia
and the liberation of large quantities of highly flammable hydrogen, the
reactions were carried out in a well-ventilated hood, with the reaction vessel
outlet directly leading into the hood exhaust.
(27) Wideman, T.; Sneddon, L. G. Inorg. Chem. 1995, 34, 1002.
C
Inorg. Chem. XXXX, XXX, XXX−XXX