2748
L. Gramigna et al.
LETTER
els of conversion were obtained, even at this reduced tem-
perature, with the more electron-rich tert-butyl ester
derived ylide 2i.
Acknowledgment
We acknowledge financial support from University of Bologna.
S. D. thanks Universidad Autónoma de Madrid and Comunidad
Autónoma de Madrid for a fellowship. We thank Prof. B. Bonini for
stimulating discussion.
Using these latter reaction conditions, and prolonging
reaction time to 144 hours, the effect of variations in the
cyclohexanone 4-substituent was briefly explored. As
shown in Table 3, results comparable with the parent 4-
tert-butyl-substituted cyclohexanone 1a were obtained
using a range of 4-alkyl-substituted cyclohexanones 1b–d
(Table 3, entries 1–4), as well as 4-phenyl-substituted 1e
(Table 3, entry 6), using ylide 2i. As we were not able to
determine the enantiomeric excess of the olefin 3k de-
rived from 4-methyl cyclohexanone 1d, the reaction was
also performed with the corresponding benzyl ester ylide
2j (Table 3, entry 5). Lower yield of the olefin 3l was ob-
tained, as expected.
References and Notes
(1) Reviews: (a) Enantioselective Organocatalysis; Dalko, P. I.,
Ed.; Wiley-VCH: Weinheim, 2007. (b) Asymmetric
Organocatalysis; List, B., Ed.; Springer: Berlin, 2009.
(c) Special issue on organocatalysis: List, B. (Ed.) Chem.
Rev. 2007, 107, 5413.
(2) Eliel, E. Stereochemistry of Organic Compounds; Wiley-
Interscience: New York, 1994.
(3) (a) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning,
M. Chem. Rev. 2011, 111, 563. (b) Hoffmann-Röder, A.;
Krause, N. Angew. Chem. Int. Ed. 2004, 43, 1196.
(4) (a) Noyori, R. Angew. Chem. Int. Ed. 2002, 41, 2008.
(b) Brunel, J. M. Chem. Rev. 2005, 105, 857. (c) Akiyama,
T. Chem. Rev. 2007, 107, 5744. (d) Terada, M. Synthesis
2010, 1929. (e) Fu, G. C. Acc. Chem. Res. 2004, 37, 542.
(5) (a) Curran, D. P.; Qi, H.; Geib, S. J.; DeMello, N. C. J. Am.
Chem. Soc. 1994, 116, 3131. (b) Ma, S. Chem. Rev. 2005,
105, 2829.
Table 3 Variation of the Cyclohexanone 1a
4g (20 mol%)
toluene (0.20 M)
0 °C, 144 h
H
EWG
O
R
+ 2i,j
R
3c,i–k,m: EWG = CO2t-Bu
3l: EWG = CO2Bn
1a–e
(6) Koumura, N.; Zijlstra, L. W. J.; van Delden, L. A.; Harada,
N.; Feringa, B. L. Nature (London) 1999, 401, 152.
(7) For exceptions, see: (a) Brandes, S.; Bella, M.; Kjærsgaard,
A.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2006, 45, 1147.
(b) Liu, H.; Leow, D.; Huang, K.-W.; Tan, C.-H. J. Am.
Chem. Soc. 2009, 131, 7212. (c) Gustafson, J. L.; Lim, D.;
Miller, S. J. Science 2010, 328, 1251. (d) Cozzi, P. G.;
Emer, E.; Gualandi, A. Angew. Chem. Int. Ed. 2011, 50,
3847.
(8) Wittig, G.; Geissler, G. Justus Liebigs Ann. Chem. 1953,
580, 44.
(9) Horner, L.; Hoffmann, H.; Wippel, H. G. Chem. Ber. 1958,
91, 61.
(10) (a) Horner, L.; Hoffmann, H.; Wippel, H. G.; Klahre, G.
Chem. Ber. 1959, 92, 2499. (b) Wadsworth, W. S. Jr.;
Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733..
(11) (a) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863.
Recent developments: (b) O’Brien, C. J.; Tellez, J. L.;
Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Kunkel, S. R.;
Przeworski, K. C.; Chass, G. A. Angew. Chem. Int. Ed. 2009,
48, 6836. (c) Dong, D.-J.; Li, H.-H.; Tian, S.-K. J. Am.
Chem. Soc. 2010, 132, 5018.
Entry
1
R
3
Yield (%)b ee (%)c
1
1a
1b
1c
1d
1d
1e
t-Bu
i-Pr
n-Pr
Me
Me
Ph
3c
3i
74
76
76
83
41
93
70
59
64
n.d.
56
67
2
3
3j
3k
3l
4
5d
6
3m
a Conditions: ketone 1a–e (0.45 mmol), catalyst 4g (0.030 mmol),
ylide 2i (0.15 mmol), toluene (0.75 mL), 0 °C, 144 h.
b Isolated yield after chromatography on silica gel.
c Determined by chiral stationary phase HPLC.
d Ylide 2j was used, in a toluene–n-hexane (1:3) solvent mixture.
In conclusion, the present work unequivocally demon-
strates that absolute stereochemistry in asymmetric Wittig
reactions can be controlled using hydrogen-bond donors
as catalysts. Coordination and stabilization of the transi-
tion state in the [2+2] cycloaddition leading to an ox-
aphosphoethane intermediate carrying the chiral
information is considered to be responsible for the ob-
served stereocontrol. Although currently restricted to the
benchmark reaction with 4-substituted cyclohexanone de-
rivatives 1 leading to axially chiral olefins 3,26 these find-
ings might open the way to the development of other
classes of asymmetric Wittig-type transformations.
(12) Reviews: (a) Brummond, K. M.; DeForrest, J. E. Synthesis
2007, 795. (b) Hoffmann-Röder, A.; Krause, N. Angew.
Chem. Int. Ed. 2002, 41, 2933.
(13) Reviews: (a) Rein, T.; Pedersen, T. M. Synthesis 2002, 579.
(b) Li, A.-H.; Dai, L.-X.; Aggarwal, V. K. Chem. Rev. 1997,
97, 2341. Representative examples: (c) Bestmann, H. J.;
Lienert, J. Angew. Chem., Int. Ed. Engl. 1969, 8, 763.
(d) Hanessian, S.; Delorme, D.; Beaudoin, S.; Leblanc, Y.
J. Am. Chem. Soc. 1984, 106, 5754. (e) Denmark, S. E.;
Chen, C.-T. J. Am. Chem. Soc. 1992, 114, 10674.
(f) Mizuno, M.; Fuji, K.; Tomioka, K. Angew. Chem. Int. Ed.
1998, 37, 515. Other examples of asymmetric Wittig
reactions: (g) Li, C.-Y.; Wang, X.-B.; Sun, X.-L.; Tang, Y.;
Zheng, J.-C.; Xu, Z.-H.; Zhou, Y.-G.; Dai, L.-X. J. Am.
Chem. Soc. 2007, 129, 1494. (h) Li, C.-Y.; Sun, X.-L.; Jing,
Q.; Tang, Y. Chem. Commun. 2006, 2980.
Supporting Information for this article is available online at
(i) Pinho e Melo, T. M. V. D.; Cardoso, A. L.;
Rocha Gonsalves, A. M. d’A.; Pessoa, J. C.; Paixão, J. A.;
Beja, A. M. Eur. J. Org. Chem. 2004, 4830.
Synlett 2011, No. 18, 2745–2749 © Thieme Stuttgart · New York