Organic Letters
Letter
dienolate from the si-face to the exposed re-face of the
nitroalkene predicts the sense of the asymmetric induction.
In summary, we have developed a highly enantioselective
nitro-Michael reaction of furanones with very low reactive β-
alkylnitroalkenes catalyzed by a novel epi-quinine-amide 4d. The
DFT calculations revealed that the conformational flexibility of
the catalyst 4d−nitroalkene adducts play a critical role in the high
asymmetric induction. This result is entirely unexpected, since in
general, asymmetric organocatalysts are designed to achieve the
conformational rigidity (e.g., a series of iminium catalysts and
T.; Kitagawa, M.; Minami, T. 92nd Annual Meeting of the Chemical
Society of Japan, March 2012, Yokohama; Abstract (1K5-50A) is
However, the substrates are restricted to unsubstituted furanones:
(
e) Trost, B. M.; Hitce, J. J. Am. Chem. Soc. 2009, 131, 4572.
4) (a) Alali, F. Q.; Liu, X.-X.; McLaughlin, J. L. J. Nat. Prod. 1999, 62,
04. (b) Casiraghi, G.; Rassu, G. Synthesis 1995, 609.
5) (a) Huang, Y.; Yang, L.; Shao, P.; Zhao, Y. Chem. Sci. 2013, 4, 3275.
(
5
(
(b) Brunner, H.; Buegler, J. Bull. Soc. Chim. Belg. 1997, 106, 77. (c) For
similar H-bonding catalysts bearing the CF group, see: Shao, Q.; Chen,
3
2
thiourea-based catalysts).
J.; Tu, M.; Piotorawski, D. V.; Huang, Y. Chem. Commun. 2013, 49,
1
7
1098. (d) Rana, N. K.; Selvokumar, S.; Singh, V. D. J. Org. Chem. 2010,
5, 2089.
ASSOCIATED CONTENT
Supporting Information
■
(
6) Compounds with very low pKa values such as cyclohexyl
*
S
Meldrum’s acid (pK in DMSO = 7−8) and α-nitroacetates (pK in
a
a
Experimental procedure and compound characterization data
DMSO = ∼9) can react with β-alkylnitroalkenes at 1−3 mol % loadings
of bifunctional H-bonding catalysts: (a) Kimmel, K. L.; Weaver, J. D.;
Ellman, J. A. Chem. Sci. 2012, 3, 121. (b) Li, Y.-Z.; Li, F.; Tian, P.; Lin, G.-
Q. Eur. J. Org. Chem. 2013, 1558.
(7) For a review, see: Bella, M.; Gasperi, T. Synthesis 2009, 1583.
(
8) Development of low-loading asymmetric organocatalysts (≤ 3 mol
AUTHOR INFORMATION
■
*
%
) has received considerable attention. Review: Giacolone, F.;
Gruttadauria, M.; Agrigento, P.; Noto, R. Chem. Soc. Rev. 2012, 41, 2406.
(9) Houk, K. N.; Paddon-Row, M. N.; Rondon, N. G.; Wu, Y.-D.;
Brown, F. K.; Spellmeyer, D. C.; Metz, J. T.; Richard, Y. L.; Loncharich,
R. J. Science 1986, 231, 1108.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This work has been supported by a Grant-in-Aid for Scientific
Research (C) (20550101) from JSPS.
■
REFERENCES
■
(
1) For recent reviews on organocatalytic asymmetric nitro-Michael
reactions and the application to organic synthesis, see: (a) Somanatham,
R.; Chav
M.; Aguirre, G.; de Parrod, C. A.; Gonzal
6, 2440. (b) Chauhan, P.; Chimni, S. S. RSC. Adv. 2012, 2, 737.
c) Raimond, W.; Bonne, D.; Rodriguez, J. Angew. Chem., Int. Ed. 2012,
1, 40. (d) Serdyuk, O. V.; Heckel, C. M.; Tsogoeva, S. B. Org. Biomol.
Chem. 2013, 11, 7051. (e) Xi, Y.; Shi, X. Chem. Commun. 2013, 49, 8583.
f) Roux, C.; Bressy, C. In Comprehensive Enantioselective Organo-
catalysis; Dalco, P., Ed.; Wiley-VCH: Weinheim, 2013; Vol. 3, pp 1013−
042. (g) Rios, R.; Moyano, A.; In Catalytic Asymmetric Conjugate
Reaction; Cordova, A., Ed.; Wiley-VCH: Weinheim, 2010; pp 191−218.
2) For selected examples of the nitro-Michael reaction promoted by
́
ez, D.; Servin, F. A.; Romero, J. A.; Navarrete, A.; Parra-Hake,
́
ez, J. S. Curr. Org. Chem. 2012,
1
(
5
(
1
́
(
bifunctional H-bonding catalysts, see: (a) McCoorey, S. H.; Connon, S.
J. Angew. Chem., Int. Ed. 2005, 44, 6367. (b) Okino, T.; Hoashi, Y.;
Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672. (c) Okino, T.; Hoashi,
Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119.
(
d) Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126,
906. (e) Basle, O.; Raimondi, W.; del Mar Sanchez Duque, M.; Bonne,
D.; Constantieux, T.; Gonzalez, J. S. Org. Lett. 2010, 12, 5246.
f) Uehara, H.; Barbas, C. F., III. Angew. Chem., Int. Ed. 2009, 48, 9848.
g) Tan, B.; Hernandez-Torres, G.; Barbas, C. F., III. Angew. Chem., Int.
9
́
́
(
(
́
Ed. 2012, 57, 5381. (h) Corbett, M. T.; Xu, Q.; Johnson, J. S. Org. Lett.
2
014, 16, 2362. (i) Cao, C.-L.; Ye, M.-C.; Sun, X.-L.; Tang, Y. Org. Lett.
2
006, 8, 2901. (j) Cui, B.-D.; Han, W.-Y.; Wu, Z.-J.; Zhang, X. -M; Yuan,
W.-C. J. Org. Chem. 2013, 78, 8833. (k) Rabalakos, C.; Wulff, W. D. J.
Am. Chem. Soc. 2008, 130, 13524. (l) Hynes, P. S.; Stranges, D.; Stupple,
P. A.; Guarna, A.; Dixon, D. J. Org. Lett. 2007, 9, 2107. (m) Cui, B.-D.;
Han, W.-Y.; Wu, Z.-J.; Zhang, X. -M; Yuan, W.-C. J. Org. Chem. 2013, 78,
8
833. (n) Noole, A.; Jar
Kanger, T. J. Org. Chem. 2013, 78, 8833.
3) (a) Manna, M. S.; Kumar, V.; Mukherjee, S. Chem. Commun. 2012,
8, 5193. (b) Terada, M.; Ando, K. Org. Lett. 2011, 13, 2026. (c) Kumar,
̈
ving, I.; Werner, F.; Lopp, M.; Malkov, A.;
(
4
V.; Ray, B.; Rathi, P.; Mukherjee, S. Syntesis 2013, 45, 1641. A similar
reaction was independently reported by us: (d) Hatanaka, Y.; Sekikawa,
D
Org. Lett. XXXX, XXX, XXX−XXX