Modeling Supramolecular Interactions in Vanadium Haloperoxidases
SHORT COMMUNICATION
[2] a) M. Andersson, A. Willetts, S. Allenmark, J. Org. Chem.
1997, 62, 8455; b) H. B. ten Brink, A. Tuynman, H. L. Dekker,
W. Hemrika, Y. Izumi, T. Oshiro, H. E. Schoemaker, R. Wever,
Inorg. Chem. 1998, 37, 6780–6784; H. B. ten Brink, H. E. Scho-
emaker, R. Wever, Eur. J. Biochem. 2001, 268, 132–138.
[3] a) A. Messerschmidt, R. Wever, Proc. Natl. Acad. Sci. USA
1996, 93, 392–396; b) A. Messerschmidt, L. Prade, R. Wever,
Biol. Chem. 1997, 378, 309–315; c) M. N. Isupov, A. R. Dalby,
A. A. Brindley, Y. Izumi, T. Tanabe, G. N. Murshudov, J. A.
Littlechild, J. Mol. Biol. 2000, 299, 1035–1049; d) M. Weyand,
H.-J. Hecht, M. Kiess, M.-F. Liaud, H. Vilter, D. Schomburg,
J. Mol. Biol. 1999, 293, 595–611.
126.43, 126.72 (HCbp3 and HCbp6), 127.85 (HCbp8), 128.33
(HCbp2), 129.00 (HCbp7), 131.78 (Cbp1), 132.51 (HCa6), 133.11
(HCa4), 139.43 (Cbp4), 141.94 (Cbp5), 155.60 (C=N), 164.69 (Ca2),
169.51 (C=O) ppm. 51V NMR (105 MHz, [D6]DMSO): δ =
–532 ppm (ν1/2 = 1067 Hz). 51V NMR (105 MHz, D2O): δ =
–533 ppm. IR (KBr): ν = 3392 (vs), 2929 (m), 1612 (m), 1550 (w),
˜
1509 (w), 1490 (w), 1448 (w), 1388 (w), 1156 (m), 1079 (m), 1028
(s), 945 (m), 906 (m), 759 (w) cm–1. MS (ESI–, MeOH): m/z (%) =
2667 (8) {[VO2(salhybiph)] +2β-CD}–, 1532 (42) {[VO2(salhybiph)]
+ β-CD}–, 1134 (30) [β-CD–H]+, 397 (100) [VO2(salhybiph)]–.
X-ray
Crystallographic
Study
of
K[VO2(salhybiph)@β-
[4] W. Plass, Angew. Chem. 1999, 111, 960–962; Angew. Chem. Int.
Ed. 1999, 38, 909–912.
Cyclodextrin]·xH2O: Crystals suitable for X-ray analysis were
grown by slow cooling of a hot water solution of the inclusion
compound. C62H84KN2O39V(·8H2O), Mr = 1715.48 gmol–1, tri-
clinic, space group P1, a = 1535.37(5), b = 1545.54(7), c =
2146.64(8) pm, α = 94.710(2), β = 98.484(2), γ = 102.994(2)°, V =
4873.9(3)ϫ106 pm3, Z = 2, µ(Mo-Kα) = 0.229 mm–1, 32730 reflec-
tions measured with a Nonius KappaCCD diffractometer at
183(2) K in the 2.49 to 27.50° Θ range. The structure was solved
by direct methods and subsequently refined against F2 with the
SHELXL-97 program,[18] which converged at R1 = 0.1126 for 20029
observed reflections with IϾ2σ(I) and wR2 = 0.3385 for all unique
reflections with a goodness-of-fit on F2 of 1.165. All non-hydrogen
atoms were refined with anisotropic displacement parameters. All
hydrogen atoms bonded to carbon atoms were introduced in theo-
retical positions but not refined. As known from the analytical data
of different batches the content of water molecules is varying. For
the measured crystals an overall content of eight water molecules
could be assigned. The potassium cations and the water molecules
were found to be disordered over several crystallographic positions
and refined with partial occupancy factors. The discrimination be-
tween potassium and water sites is made on the basis of the poten-
tial coordination numbers and hydrogen bonding interactions. For
the water molecules, no attached hydrogen atoms were considered.
Additional disorder was found for one of the included anionic va-
nadium complexes (V2) which was refined with a relative ratio of
about 1:2. The largest positive and negative residual Fourier peaks
after the refinement were equal to 0.82 and –0.51, respectively.
CCDC-629924 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[5] K. Ishikawa, Y. Mihara, K. Gondoh, E. Suzuki, Y. Asano,
EMBO J. 2000, 19, 2412–2423.
[6] a) M. Bangesh, W. Plass, J. Mol Struct. THEOCHEM 2005,
725, 163–175; b) W. Plass, Abstracts of Papers of the American
Chemical Society 2006, 232, 400–Inor (September 10); c) W.
Plass, M. Bangesh, S. Nica, A. Buchholz in Vanadium: The
Versatile Metal (Eds.: K. Kustin, D. C. Crans, J. C. Pessoa),
ACS Symposium Series, American Chemical Society, Washing-
ton, D. C., 2007, in press.
[7] W. Plass, Coord. Chem. Rev. 2003, 237, 205–212.
[8] a) S. Nica, A. Pohlmann, W. Plass, Eur. J. Inorg. Chem. 2005,
2032–2036; b) A. Pohlmann, S. Nica, T. K. K. Luong, W. Plass,
Inorg. Chem. Commun. 2005, 8, 289–292.
[9] a) J. Szejtli, Chem. Rev. 1998, 98, 1743–1753; b) K. Harata,
Chem. Rev. 1998, 89, 1803–1827; c) P. Bortolus, G. Marconi,
S. Monti, B. Mayer, G. Köhler, G. Grabner, Chem. Eur. J. 2000,
6, 1578–1591.
[10] a) R. Breslow, S. D. Dong, Chem. Rev. 1998, 98, 1997–2011;
H. Sakuraba, H. Maekawa, J. Incl. Phenom. Macrocycl. Chem.
2006, 54, 41–45; b) F. Kramer, W. Dietsche, Chem. Ber. 1959,
92, 1739–1747.
[11] S. S. Braga, F. A. Almeida Paz, M. Pillinger, J. D. Seixas, C. C.
Romão, I. S. Gonçalves, Eur. J. Inorg. Chem. 2006, 1662–1669.
[12] a) Y. Liu, R.-Q. Zhong, H.-Y. Zhang, H.-B. Song, Chem. Com-
mun. 2005, 2211–2213; b) G. Meister, H. Stoeckli-Evans, G.
Süss-Fink, J. Organomet. Chem. 1993, 453, 249–253; c) B. Klin-
gert, G. Rihs, J. Chem. Soc., Dalton Trans. 1991, 2749–2760;
d) B. Klingert, G. Rihs, Organometallics 1990, 9, 1135–1141; e)
Y. Odagaki, K. Hirotsu, T. Higuchi, A. Harada, S. Takahashi,
J. Chem. Soc., Perkin Trans. 1 1990, 1230–1231; f) D. R. Al-
ston, A. M. Z. Slawin, J. F. Stoddart, D. J. Williams, Angew.
Chem. 1985, 97, 771–772; Angew. Chem. Int. Ed. Engl. 1985,
24, 786–787.
[13] a) W. Plass, A. Pohlmann, H.-P. Yozgatli, J. Inorg. Biochem.
2000, 80, 181–183; b) W. Plass, H.-P. Yozgatli, Z. Anorg. Allg.
Chem. 2003, 629, 65–70.
[14] a) J. Becher, I. Seidel, W. Plass, D. Klemm, Tetrahedron 2006,
62, 5675–5681; b) A. Pohlmann, W. Plass, J. Inorg. Biochem.
2001, 86, 381; c) S. Nica, M. Rudolph, H. Görls, W. Plass,
Inorg. Chim. Acta 2007, DOI:10.1016/j.ica.2006.09.018; d) I.
Lippold, S. Nica, M. Mancka, W. Plass, Abstracts of Papers of
the American Chemical Society 2006, 232, 829–Inor (September
10).
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details for the synthesis of the H2salhybiph li-
gand and the [VO2H(salhybiph)] complex.
Acknowledgments
The authors gratefully acknowledge the financial support of this
study by the Deutsche Forschungsgemeinschaft. We wish to thank
Brunhilde Dreßler for assistance with the AAS measurements.
[15] A. Harada, K. Saeki, S. Takahashi, Organometallics 1989, 8,
730–733.
[16] S. Milic´, N. Colovic´, M. Antonijevic´, F. Gaál, J. Therm. Anal.
Calorim. 2000, 61, 229–238.
[1] a) R. Wever, W. Hemrika in Handbook of Metalloproteins, Vol.
2 (Eds.: A. Messerschmidt, R. Huber, T. Poulos, K. Wiegh-
ardt), John Wiley and Sons Ltd., Chichester, 2001, pp. 1417–
1428; b) A. Butler, Coord. Chem. Rev. 1999, 187, 17–35; c) D. C.
Crans, J. J. Smee, E. Gaidamauskas, L. Yang, Chem. Rev. 2004,
104, 849–902.
[17] W. Saenger, J. Incl. Phenom. Macrocycl. Chem. 1984, 2, 445–
454.
[18] G. Sheldrick, SHELXS-97 and SHELXL-97, University of
Göttingen, Germany, 1997.
Received: December 22, 2006
Published Online: March 6, 2007
Eur. J. Inorg. Chem. 2007, 1487–1491
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
1491