T. Nitabaru et al. / Tetrahedron Letters 49 (2008) 272–276
275
2006, 386, 472; (c) Sigel, R. K. O.; Pyle, A. M. Chem. Rev.
2007, 107, 97, and references cited therein.
acid residue and an aminophenol part on the stereo-
chemical outcome was examined (Table 2). Bulkier sub-
stituents on the amino acid residue gave product 3a in
lower stereoselectivity (entries 2–4), presumably because
the formation of polymetallic assembly was encumbered
and higher fraction of the reaction would proceed
through the chelated cyclic TS. Ligand 1e derived from
L-Leu performed best, affording 3a in 85% yield with
anti/syn = 92:8 and 59% ee (anti) (entry 5). Manipula-
tions of the aminophenol part had less impact on stereo-
selectivity, implying that the amino acid residue is
important for constructing a suitable chiral platform
for the present bimetallic system (entries 6–8).
2. For reviews, see: (a) Aspinall, H. C. Chem. Rev. 2002, 102,
1807; (b) Tsukube, H.; Shinoda, S. Chem. Rev. 2002, 102,
2389; (c) Parker, D. Chem. Soc. Rev. 2004, 33, 156; (d)
Bari, L. D.; Salvadori, P. Coord. Chem. Rev. 2005, 249,
2854, and references cited therein.
3. Metal Ions in Biological Systems: The Lathanides and Their
Interrelations with Biosystems; Sigel, H., Sigel, A., Eds.;
Marcel Dekker: New York, 2003; Vol. 40.
4. Mashiko, T.; Hara, K.; Tanaka, D.; Fujiwara, Y.;
Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2007,
129, 11342.
5. Henry, L. C.R. Seances Acad. Sci. 1895, 120, 1265.
6. For recent reviews, see: (a) Shibasaki, M.; Gro¨ger, H. In
Comprehensive Asymmetric Catalysis; Jacobsen, E. N.,
Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, Ger-
many, 1999; Vol. III, pp 1075–1090; (b) Luzzio, F. A.
Tetrahedron 2001, 57, 915; (c) Palomo, C.; Oiarbide, M.;
Mielgo, A. Angew. Chem., Int. Ed. 2004, 43, 5442; (d)
Shibasaki, M.; Gro¨ger, H.; Kanai, M. In Comprehensive
Asymmetric Catalysis Supplement 1; Jacobsen, E. N.,
Pfaltz, A., Yamamoto, H., Eds.; Springer: Hidelberg,
Germany, 2004; pp 131–133; (e) Boruwa, J.; Gogoi, N.;
Saikia, P. P.; Barua, N. C. Tetrahedron: Asymmetry 2006,
17, 3315; (f) Palomo, C.; Oiarbide, M.; Laso, A. Eur. J.
Org. Chem. 2007, 2561.
The optimized reaction conditions were evaluated with a
variety of aldehydes (Table 3). The reaction reached
completion with 3 mol % of catalyst loading without
any detrimental effects (entries 1 and 2). o-Alkyl substit-
uents on the aromatic ring of aldehyde enhanced both
diastereo- and enantioselectivity, exhibiting nearly
exclusive formation of anti-diastereomers with 76–84%
ee (entries 3–8). The reaction of aldehyde with elec-
tron-withdrawing diethylaminocarbonyl group pro-
ceeded smoothly (entry 7), whereas the sluggish
reactions were observed in the reaction of aldehyde with
p-fluoro or p-methoxy substituent (entries 6 and 8).
7. (a) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev.
1996, 96, 835; (b)Catalytic Asymmetric Synthesis, 2nd ed.;
Ojima, I., Ed.; Wiley-VCH: New York, 2000; (c) Bergme-
ier, S. C. Tetrahedron 2000, 56, 2561.
In summary, we developed a catalytic asymmetric anti-
selective nitroaldol reaction using a newly developed
Nd/Na/amide heterobimetallic catalyst to afford anti-
1,2-nitro alkanols, providing a facile entry to anti-1,2-
amino alcohols with significant synthetic versatility.
The catalyst worked particularly well in the reaction of
aromatic aldehydes with an o-alkyl substituent and
exhibits high diastereo- (anti/syn = 96:4–98:2) and
enantioselectivity (76–84% ee (anti)) with 3 mol % cata-
lyst loading. Investigations into the structure of the
heterobimetallic catalyst and further improvement of
enantioselectivity as well as substrate generality are
currently underway.
8. Selected examples of an enantioselective nitroaldol reac-
tion: (a) Sasai, H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki,
M. J. Am. Chem. Soc. 1992, 114, 4418; (b) Christensen, C.;
Juhl, C.; Jørgensen, K. A. Chem. Commun. 2001, 2222; (c)
Trost, B. M.; Yeh, V. S. C. Angew. Chem., Int. Ed. 2002,
41, 861; (d) Evans, D. A.; Seidel, D.; Rueping, M.; Lam,
H. W.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc.
2003, 125, 12692; (e) Kogami, Y.; Nakajima, T.; Ashiz-
awa, T.; Kezuka, S.; Ikeno, T.; Yamada, T. Chem. Lett.
2004, 33, 614; (f) Palomo, C.; Oiarbide, M.; Laso, A.
Angew. Chem., Int. Ed. 2005, 44, 3881; (g) Choudary, B.
M.; Ranganath, K. V. S.; Pal, U.; Kantam, M. L.;
Sreedhar, B. J. Am. Chem. Soc. 2005, 127, 13167; (h)
Marcelli, T.; van der Haas, R. N. S.; van Maarseveen, J.
H.; Hiemstra, H. Angew. Chem., Int. Ed. 2006, 45, 929; (i)
Arai, T.; Watanabe, M.; Fujiwara, A.; Yokoyama, N.;
Yanagisawa, A. Angew. Chem., Int. Ed. 2006, 45, 5978; (j)
Mandal, T.; Samanta, S.; Zhao, C.-G. Org. Lett. 2007, 9,
943; (k) Xiong, Y.; Wang, F.; Huang, X.; Wen, Y.; Feng,
X. Chem. Eur. J. 2007, 13, 829; (l) Ma, K.; You, J. Chem.
Eur. J. 2007, 13, 1863; (m) Bandini, M.; Piccinelli, F.;
Tommasi, S.; Umani-Ronchi, A.; Ventrici, C. Chem.
Commun. 2007, 616; (n) Bandini, M.; Benaglia, M.; Sinisi,
R.; Tommasi, S.; Umani-Ronchi, A. Org. Lett. 2007, 9,
2151, and references cited therein.
Acknowledgments
This work was financially supported by Grant-in-Aid
for specially promoted research. N.K. thanks Grant-
in-Aid for Young Scientist (B). Financial support from
Toray Co Ltd is gratefully acknowledged.
Supplementary data
9. (a) Sasai, H.; Tokunaga, T.; Watanabe, S.; Suzuki, T.;
Itoh, N.; Shibasaki, M. J. Org. Chem. 1995, 60, 7388; (b)
Sohtome, Y.; Hashimoto, Y.; Nagasawa, K. Eur. J. Org.
Chem. 2006, 2894; (c) Arai, T.; Watanabe, M.; Yanagis-
awa, A. Org. Lett. 2007, 9, 3595.
Supplementary data associated with this article can be
10. (a) Colvin, E. W.; Seebach, D. J. Chem. Soc., Chem.
Commun. 1978, 689; (b) Seebach, D.; Beck, A. K.; Lehr,
F.; Weller, T.; Colvin, E. Angew. Chem., Int. Ed. Engl.
1981, 20, 397; (c) Seebach, D.; Beck, A. K.; Mukhopad-
hyay, T.; Thomas, E. Helv. Chim. Acta 1982, 65, 1101.
11. Other examples of anti-selective nitroaldol reaction in
racemic studies, see: (a) Barrett, A. G. M.; Robyr, C.;
Spilling, C. D. J. Org. Chem. 1989, 54, 1233; (b) Parratt,
References and notes
1. For recent reviews, see: (a) McMaster, J. Annu. Rep. Prog.
Chem. Sect., A 2006, 102, 564; (b) Kaltashov, I. A.; Zhang,
M.; Eyles, S. J.; Abzalimov, R. R. Anal. Bioanal. Chem.