1H-NMR, adenosine, chiral carbons, chemical shift non-equivalence
that the SCH 2 was also split into ‘dt’ or ‘dq’ coupling peaks, but
as two separate parts.
References
[1] G. M. Blackburn, M. J. Gait, D. Loakes, D. Williams, Nucleic Acids in
Chemistry and Biology, RSC, Cambridge, 2008, pp. 13–75.
[2] M. Legraverend. Tetrahedron 2008, 64, 8585–8603.
[3] A. Manvar, A. Shah. Tetrahedron 2013, 69, 8105–8127.
[4] M. Egli, P. Herdewijn, Chemistry and Biology of Artificial Nucleic Acids,
Wiley, New York, 2012, pp. 187–258.
[5] N. R. Kode, S. Phadtare. Molecules 2011, 16, 5840–5860.
[6] J. N. Kim, K. F. Blount, I. Puskarz, J. Lim, K. H. Link, R. R. Breaker. ACS
Chem. Biol. 2009, 4, 915–927.
[7] A. H. Ingall, J. Dixon, A. Bailey, M. E. Coombs, D. Cox, J. I. McInally,
S. F. Hunt, N. D. Kindon, B. J. Teobald, P. A. Willis, R. G. Humphries,
P. Leff, J. A. Clegg, J. A. Smith, W. Tomlinson. J. Med. Chem.
1999, 42, 213–220.
[8] B. Springthorpe, A. Bailey, P. Barton, T. N. Birkinshaw, R. V. Bonnert,
R. C. Brown, D. Chapman, J. Dixon, S. D. Guile, R. G. Humphries,
S. F. Hunt, F. Ince, A. H. Ingall, I. P. Kirk, P. D. Leeson, P. Leff, R. J. Lewis,
B. P. Martin, D. F. McGinnity, M. P. Mortimore, S. W. Paine,
G. Pairaudeau, A. Patel, A. J. Rigby, R. J. Riley, B. J. Teobald,
W. Tomlinson, P. J. Webborn, P. A. Willis. Bioorg. Med. Chem. Lett.
2007, 17, 6013–60138.
[9] G. Liu, J. Xu, N. Chen, S. Zhang, Z. Ding, H. Du. Eur. J. Med. Chem.
2012, 53, 114–123.
[10] Q. He, H. Du. Chin. J. Org. Chem. 2012, 32, 1678–1683.
[11] C. Pan, X. Wei, J. Ye, G. Liu, S. Zhang, Y. Zhang, H. Du, Z. Ding. PLoS One
2012, 7, e40451. doi:10.1371/journal.pone.0040451.
[12] L. Hu, Z. Fan, H. Du, R. Ni, S. Zhang, K. Yin, J. Ye, Y. Zhang, X. Wei,
X. Zhang, P. L. Gross, S. P. Kunapuli, Z. Ding. Thromb. Haemost.
2011, 106, 1204–1214.
[13] S. Zhang, L. Hu, H. Du, Y. Guo, Y. Zhang, H. Niu, J. Jin, J. Zhang, J. Liu,
X. Zhang, S. P. Kunapuli, Z. Ding. Thromb. Haemost. 2010, 104, 845–857.
[14] A. Kovalovs, I. Novosjolova, E. Bizdena, I. Bizane, L. Skardziute,
K. Kazlauskas, S. Jursenas, M. Turks. Tetrahedron Lett. 2013, 54, 850–853.
[15] G. R. Qu, H. L. Zhang, H. Y. Niu, Z. K. Xue, X. X. Lv, H. M. Guo. Green Chem.
2012, 14, 1877–1879.
The four chiral carbons in ribose, which connected with the 9-N
of the purine skeleton, especially the 1′-carbon, the nearest chiral
center, although there are seven chemical bonds between the
SCH2 and 1′-carbon, generate a long-range chiral effect resulting
the two protons of SCH2 chemical shift non-equivalence. However,
when the non-chiral carbon-substituent at the 9-N of the purine
skeleton, the two protons in SCH2 were normally split into a ‘t’ or
‘q’ peaks, rather than two ‘dt’ or ‘dq’ peaks (5m–o, Fig. 4). This
proves that the four chiral carbons at the 9-N of purine skeleton
result the two protons of SCH 2 diastereomerism, their chemical
shift non-equivalence and split into two ‘dt’ or ‘dq’ coupling peaks.
1
Further analysis of the H-NMR of the target compounds 5a–l,
suggesting that there is existence of solvent effect between
CDCl3 and DMSO-d6. Such as the chemical shifts of NH and
SCH2, the NH chemical shift of compound 5j–l in CDCl3 was
around 7.53 ppm but moved to 8.41ppm in DMSO-d6 (Figs. 2
and 3). It was assumed that a hydrogen bond was generated
between solvent (CDCl3) and the sample. The SCH2 was split
into two separated moieties in CDCl3 as ‘dt’ coupling peaks
but in DMSO-d6 occurs in an integral for the coupling peaks
(Fig. 2 and Fig. 3). In addition to the proton NMR data of
SCH2 and NH, the peaks of other groups also have a little
change, but not very obviously.
Conclusions
[16] S. M. Devine, P. J. Scammells. Eur. J. Org. Chem. 2011, 6, 1092–1098.
[17] S. M. Devine, A. Gregg, H. Figler, K. McIntosh, V. Urmaliya, J. Linden,
C. W. Pouton, P. J. White, S. E. Bottle, P. J. Scammells. Bioorg. Med.
Chem. 2010, 18, 3078–3087.
[18] R. Narukulla, D. E. Shuker, V. Ramesh, Y. Z. Xu. Magn. Reson. Chem.
2008, 46, 1–8.
[19] S. Standara, K. Maliňáková, R. Marek, J. Marek, M. Hocek, J. Vaara,
M. Straka. Phys. Chem. Chem. Phys. 2010, 12, 5126–5139.
[20] E. Procházková, L. Cechová, P. Jansa, M. Dračínský. Magn. Reson. Chem.
2012, 50, 295–298.
In summary, the preparation and proton NMR spectroscopic
characterization of several novel SCH2-containing adenosine
1
derivatives were described. The H-NMR spectra of 6-alkylamino-2-
alkylthioadenosine derivatives suggest that the two protons in the
SCH2 are diastereomerism, their chemical shifts non-equivalence
and split into two ‘dt’ or ‘dq’ coupling peaks. However, the two pro-
tons of SCH2 of 9-acetoxyethyl-6-alkylamino-2-alkylthiopurine deriv-
atives are normally split into a canonical ‘t’ or ‘q’ peak. This proves
that the chiral carbons at the 9-N of purine skeleton have a long-
range chiral effect on the two diastereotopic protons of SCH2.
Supporting information
Acknowledgement
Additional supporting information may be found in the online ver-
sion of this article at the publisher’s website.
This work was supported in part by the National Natural Science
Foundation of China (project no. 21272022).
Magn. Reson. Chem. (2014)
Copyright © 2014 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/mrc